16th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems - Theory of Plasma Instabilities

Contribution ID: 105

Type: Poster

The collisional resonance function in discrete-resonance quasilinear plasma systems

Thursday, 5 September 2019 15:15 (15 minutes)

A method is developed to analytically determine the resonance broadening function in quasilinear theory, due to either Krook or Fokker-Planck scattering collisions of marginally unstable plasma systems where discrete resonance instabilities are excited without any mode overlap. It is demonstrated that a quasilinear system that employs the calculated broadening functions reported here systematically recovers the nonlinear growth rate and mode saturation levels for near-threshold plasmas previously calculated from kinetic theory. The distribution function is also calculated, which enables precise determination of the characteristic collisional resonance width.

Country or International Organization

United States

Primary authors: Dr DUARTE, Vinicius (Princeton Plasma Physics Laboratory); GORELENKOV, Nikolai (Princeton Plasma Physics Laboratory); Dr WHITE, Roscoe B. (Princeton Plasma Physics Laboratory); BERK, Herbert (University of Texas at Austin)

Presenter: Dr DUARTE, Vinicius (Princeton Plasma Physics Laboratory)

Session Classification: Poster

Track Classification: Transport of Energetic Particles