First-principle formulation of resonance broadened quasilinear theory near an instability threshold

Vinícius N. Duarte¹

In collaboration with Nikolai Gorelenkov¹, Roscoe White¹ and Herb Berk²

¹Princeton Plasma Physics Laboratory, Princeton, NJ, USA ²University of Texas, Austin, TX, USA

"The collisional resonance function in discrete-resonance quasilinear plasma systems", (arXiv:1906.01780)

Critical gradient behavior suggests that quasilinear modeling is appropriate

DIII-D critical gradient experiments

Stiff, stochastic fast ion transport gives credence in using a quasilinear approach

- Fully nonlinear modeling of fast ion interaction with Alfvénic modes in a realistic tokamak is numerically expensive
- Reduced (but still realistic) modeling can be exploited if linear mode properties do not change faster than the equilibrium, e. g.,
 - eigenstructure
 - resonance condition
- Simulations need to cope with the simultaneous excitation of multiple unstable Alfvénic instabilities
- Reduced models need to be strongly verified

Early development of broadening quasilinear theory

Let us consider canonical variables of actions J and angles φ In a tokamak, J is a combination of $(\mathcal{E},P_{\varphi},\mu)$

$$\dot{\varphi} = \partial H_0(J) / \partial J \equiv \Omega(J)$$

The line broadening model $(\delta(\Omega - \omega) \to \mathcal{F}(\Omega - \omega))$:

$$\frac{\partial f}{\partial t} = \frac{\pi}{2} \frac{\partial}{\partial \Omega} \omega_b^4 \mathcal{F} \frac{\partial f}{\partial \Omega} + \nu_{\text{eff}}^3 \frac{\partial^2}{\partial \Omega^2} (f - f_0) \qquad \frac{\mathrm{d}}{\mathrm{d}t} \omega_b^4 = 2(\gamma - \gamma_d) \omega_b^4 \qquad \gamma = \frac{\pi}{4} \int \mathrm{d}\Omega \mathcal{F} \frac{\partial f}{\partial \Omega}$$

- ${\mathcal F}$ is an arbitrary resonance function
- ω_b is the trapping (bounce) frequency at the elliptic point (proportional to square root of mode amplitude)

H. Berk, B. Breizman, J. Fitzpatrick, and H. Wong, Nucl. Fusion 35, 1661 (1995).

Determining the parametric dependencies of the broadening from single mode saturation levels

We use analytic results for determining a and b: $\Delta\Omega=a\omega_b+b\nu_{eff}$

Limit near marginal stability³ $\Rightarrow b = 3.1$

$$\omega_b = 1.18
u_{ extit{eff}} \left(rac{\gamma_{ extit{L0}} - \gamma_d}{\gamma_{ extit{L0}}}
ight)^{1/4}$$

Limit far from marginal stability⁴ $\rightarrow a = 2.7$

$$\omega_b = 1.2
u_{ extit{eff}} \left(rac{\gamma_{L0} - \gamma_d}{\gamma_d}
ight)^{1/3}$$

Resonance-broadened quasilinear formalism can cope with both situations of isolated and overlapping modes

⁴H. L. Berk and B. N. Breizman. Phys. Fluids B, 2(9), 1990

³H. L. Berk et al. Plasma Phys. Rep, 23(9), 1997

The overlapping of resonances lead to losses due to global diffusion

- Designed to address both regimes of isolated and overlapping resonances
 - the fast ion distribution function relaxes while self-consistently evolving the amplitude of modes

H. Berk, B. Breizman, J. Fitzpatrick, and H. Wong, Nucl. Fusion 35, 1661 (1995).

First-principle analytical determination of the collisional resonance broadening – part I

Start with the kinetic equation:
$$\frac{\partial f}{\partial t} + \Omega \frac{\partial f}{\partial \varphi} + Re \left(\omega_b^2 e^{i\varphi} \right) \frac{\partial f}{\partial \Omega} = C \left[f, F_0 \right] \qquad {}^{\nu_K (F_0 - f)}_{\nu_{scatt} \partial^2 (f - F_0) / \partial \Omega^2}$$

Periodicity over the canonical angle allow the distribution to be written as a Fourier series:

$$f(\varphi, \Omega, t) = F_0(\Omega) + f_0(\Omega, t) + \sum_{n=1}^{\infty} (f_n(\Omega, t) e^{in\varphi} + c.c.)$$

Near marginal stability, a perturbation theory can be developed in orders of $\omega_b^2/\nu_{K,scatt}^2$ which leads to the ordering $|F_0'|\gg \left|f_1'^{(1)}\right|\gg \left|f_0'^{(2)}\right|,\left|f_2'^{(2)}\right|$. When memory effects are weak, i.e., $\nu_{K,scatt}/\left(\gamma_{L,0}-\gamma_d\right)\gg 1$,

$$f_{1} = \frac{\omega_{b}^{2} F_{0}'}{2 (i\Omega + \nu_{K})} \qquad \frac{\partial f_{0}}{\partial t} + \frac{1}{2} \left(\omega_{b}^{2} \left[f_{1}' \right]^{*} + \omega_{b}^{2*} f_{1}' \right) = -\nu_{K} f_{0}$$

First-principle analytical determination of the collisional resonance broadening - part II

0.4

0.3

0.2

0.1

-10

0.6

 $v_{\text{scatt}} \mathcal{R}_{\text{scatt}}$

-5

 $\Omega/\nu_K,\Omega/\nu_{\rm scatt}$

(a)

5

 $\delta f_{\text{scatt}}/(F_0'|\omega_b^2|^2/v_{\text{scatt}}^3)$

When decoherence is strong, the distribution function has no angle dependence:

$$f(\Omega, t) \equiv F_0(\Omega) + f_0(\Omega, t)$$

In the limit $\nu_{K,scatt}/\left(\gamma_{L,0}-\gamma_{d}\right)\gg1$, the distribution satisfies a diffusion equation:

$$\frac{\partial f\left(\Omega,t\right)}{\partial t} - \frac{\pi}{2} \frac{\partial}{\partial \Omega} \left[\left| \omega_b^2 \right|^2 \mathcal{R}\left(\Omega\right) \frac{\partial f\left(\Omega,t\right)}{\partial \Omega} \right] = C\left[f,F_0\right]$$

With the spontaneously emerged collisional resonance functions (both satisfy $\int_{-\infty}^{\infty} \mathcal{F}(\Omega) d\Omega = 1$):

functions (both satisfy
$$\int_{-\infty}^{\infty} \mathcal{F}(\Omega) d\Omega = 1$$
):
$$\mathcal{R}_K(\Omega) = \frac{1}{\pi \nu_K (1 + \Omega^2/\nu_K^2)} \quad \mathcal{R}_{scatt}(\Omega) = \frac{1}{\pi \nu_{scatt}} \int_0^{\infty} ds \, \cos\left(\frac{\Omega s}{\nu_{scatt}}\right) e^{-s^3/3} \frac{-0.3}{-0.6}$$
*Duarte, Gorelenkov, White and Berk, "The collisional resonance function in $\frac{0.3}{\sqrt{\kappa}} \int_{-0.6}^{\sqrt{\kappa}} |u_b|^2 |v_b|^2 |v_b|^2$

*Duarte, Gorelenkov, White and Berk, "The collisional resonance function in discrete-resonance quasilinear plasma systems" arXiv:1906.01780v1 (submitted)

Self-consistent formulation of collisional quasilinear transport theory

$$\frac{\partial f\left(\Omega,t\right)}{\partial t} - \frac{\pi}{2} \frac{\partial}{\partial \Omega} \left[\left| \omega_b^2 \right|^2 \mathcal{R}\left(\Omega\right) \frac{\partial f\left(\Omega,t\right)}{\partial \Omega} \right] = C\left[f, F_0\right]$$

$$\gamma_L(t) = \frac{\pi}{4} \int_{-\infty}^{\infty} d\Omega \mathcal{R} \frac{\partial f(\Omega, t)}{\partial \Omega} \qquad d \left| \omega_b^2 \right|^2 / dt = 2 \left(\gamma_L(t) - \gamma_d \right) \left| \omega_b^2 \right|^2$$

- A QL theory naturally emerges when considering kinetic theory near threshold when collisions occur at a time scale faster than the phase mixing time scale.
- The QL plasma system automatically replicates the nonlinear growth rate and the wave saturation levels calculated from full kinetic theory near marginality, with a rather complex time-delayed integro-differential equation (Berk, Breizman and Pekker, *Phys. Rev. Lett.* 1996) $|\omega_{b,sat}| = 8^{1/4} \left(1 \gamma_d/\gamma_{L,0}\right)^{1/4} \nu_K$

Summary

- A systematic QL theory has been derived from first principles near an instability threshold.
- Indicates that QL theory is applicable to a single discrete resonance (with no overlap), provided that stochasticity is large enough
- Collisional resonance broadening functions emerge spontaneously
- Major arbitrariness of collisional QL theory (the shape of the resonance functions)
 has now been removed
- The quasilinear system (with the calculated broadening functions) systematically recovers the mode saturation levels for near-threshold plasmas previously calculated from nonlinear kinetic theory
- Resonance functions are being implemented into the Resonance Broadening Quasilinear (RBQ) code

Backup slides

Verification: analytical collisional mode evolution near threshold

 Near marginal stability, the wave amplitude evolution is governed by [Berk, Breizman and Pekker, PRL 1996]

$$\frac{dA(t)}{dt} = A(t) - \frac{1}{2} \int d\Gamma \mathcal{H} \left\{ \int_0^{t/2} dz z^2 A(t-z) \times \int_0^{t-2z} dy e^{-\hat{\nu}_{eff}^3 z^2 (2z/3+y)} A(t-z-y) A^*(t-2z-y) \right\}$$

• An approximate analytical solution is found when $\hat{
u}_{eff} \gg 1$: [Duarte & Gorelenkov, NF 2019]

$$A(t) = \frac{A(0)e^t}{\sqrt{1 - gA^2(0)(1 - e^{2t})}}$$

 $g \equiv \int d\Gamma \mathcal{H} \frac{\Gamma(1/3)}{6\hat{\nu}_{eff}^4} \left(\frac{3}{2}\right)^{1/3}$ is a resonance-averaged collisional contribution evaluated by NOVA-K

Resonance-broadened quasilinear (RBQ) diffusion model

Formulation in action and angle variables^{2,3}

• Diffusion equation:

$$\frac{\partial f}{\partial t} = \frac{\partial}{\partial I} \left(\sum_{n_k, p, m, m'} D(I; t) \right) \frac{\partial f}{\partial I} + \left(\left| \frac{\partial \Omega_{\mathbf{l}}}{\partial I} \right|_{I_r} \right)^{-2} \nu_{scatt, \mathbf{l}}^3 \frac{\partial^2 (f - f_0)}{\partial I^2}$$

Mode amplitude evolution:

$$\frac{dC_n^2(t)}{dt} = 2\left(\gamma_{L,n} - \gamma_{d,n}\right)C_n^2(t)$$

Broadened delta, a function of $\Delta\Omega$

$$D(I;t) = \pi C_k^2(t) \mathcal{E}^2 \underbrace{\frac{\mathcal{F}_{\mathbf{l}} \mathbf{J} - I_r)}{\left| \frac{\partial \Omega_{\mathbf{l}}}{\partial I} \right|} G_{m'p}^* G_{mp}$$

$$\frac{\partial}{\partial I} = \omega \frac{\partial}{\partial \mathcal{E}} - n \frac{\partial}{\partial P_{\varphi}}$$

Physics-based determination of the window function is pending

Broadening is the platform that allows for momentum and energy exchange between particles and waves: $\Delta\Omega = a\omega_b + b\nu_{eff}$

 $\frac{J}{S}$ Berk, Breizman, Fitzpatrick and Wong, NF 1995. Raufman PoF, JPP 1972 (no broadening due to growth rate!).

³Gorelenkov, Duarte, Podestà and Berk, NF 2018.

eigenstucture

information

Broadening is adjusted to replicate analytical predictions for the mode saturation amplitude of single modes

Definitions: initial linear growth rate γ_L , mode damping rate γ_d and trapping (bounce) frequency ω_b (proportional to square root of mode amplitude)

Collisionless case

Undamped case

$$\omega_b \cong 3.2\gamma_L$$

Collisional cases

Close to marginal stability: $\nu_{\rm eff} \gg \omega_h$

$$\omega_b = 1.18\nu_{\rm eff} \left(\frac{\gamma_L - \gamma_d}{\gamma_d}\right)^{1/4}$$

stability: $\omega_b \gg \nu_{\rm eff}$

$$\omega_b = 1.2\nu_{\rm eff} \left(\frac{\gamma_L - \gamma_d}{\gamma_d}\right)^{1/3}$$

Far from marginal

Bounce (trapping) frequency ω_h vs time t 1.5 20 100 120 YLO t

10 $\operatorname{Expected}^{\gamma_{\mathsf{L},\mathsf{o}}}$ tasturation levels from analytic theory are shown by

50

60

- same form of the function calculated by Dupree [T. H. Dupree, Phys. Fluids 9, 1773 (1966)] in a different context, namely in the study of strong turbulence theory, where a dense spectrum of fluctuations diffuse particles away from their free-streaming trajectories. In that case, the cubic term in the argument of the exponential is proportional to a collisionless diffusion coefficient.
- the reduction of reversible equations of motion into a diffusive system of equations that governs the resonant particle dynamics without detailed tracking of the ballistic motion
- The collisional broadening of resonance lines is a universal phenomenon in physics (e.g., atoms emission/absorption spectral profile in atomic physics)