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Critical gradient behavior suggests that quasilinear

modeling is appropriate

DIII-D critical gradient

experiments * Fully nonlinear modeling of fast ion interaction with
Stiff, stochastic fast ion transport Alfvénic modes in a realistic tokamak is numerically
gives credence in using a quasilinear expensive
approach . - . . .
Fast-ion Transport * Reduced (but still realistic) modeling can be exploited if
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Early development of broadening quasilinear

theory

Let us consider canonical variables of actions Jand angles ¢ ¢ =0Hy(J)/0J =Q(J)
In a tokamak, J is a combination of (£, P, 1)

The line broadening model (H(Q — w) — F(Q — w)):
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« Fis an arbitrary resonance function
* )y is the trapping (bounce) frequency at the elliptic point (proportional to square

root of mode amplitude)
H. Berk, B. Breizman, J. Fitzpatrick, and H.

Wong, Nucl. Fusion 35, 1661 (1995).
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Determining the parametric dependencies of the broadening

from single mode saturation levels

We use analytic results for determining aand b: AQ = aw, + Y

Limit near marginal stability3 wp = 1.180e5r (’YLO_’Yd)l/Ar

> b=31 e

Limit far from marginal stability* o \1/3
_ YLo—"7d

S g = 2.7 Wp — 1.2I/eff ( ~a )

Resonance-broadened quasilinear formalism can cope with both situations of isolated
and overlapping modes

3H. L. Berk et al. Plasma Phys. Rep, 23(9), 1997
4H. L. Berk and B. N. Breizman. Phys. Fluids B, 2(9), 1990
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The overlapping of resonances lead to losses due to

global diffusion

« Designed to address both regimes of isolated and overlapping resonances

— the fast ion distribution function relaxes while self-consistently evolving the amplitude of modes
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First-principle analytical determination of the

collisional resonance broadening — part |

vk (Fo — f)
Start with the kinetic equation: 9/ 0% 1 Re (wge 90) YT _ ot Ryl e

ot o3 o
Periodicity over the canonical angle allow the distribution to be written as a Fourier series:

f (0, Q8) = Fo () + fo () + i (u (2,1) €% 1 c.c)

Near marginal stability, a perturbation theory can be developed in orders of w%/u%)scatt

which leads to the ordering |F}| > f{(l)‘ > |12, f§(2)’. When memory effects are weak,
i-e-; VK,scatt/ (VL,O — ’Yd) > 1;
2 1/
_ wy £ Afo 1, 50 = 2% p1\
fr= 2 (i + vi) o 32 (LAl + @ i) = =vicfo




First-principle analytical determination of the

collisional resonance broadening — part Il

When decoherence is strong, the distribution function has 04 VscatRscatt (@)
no angle dependence: 0.3
f(Qt) = Fo(Q) + fo (1) 0.2
0.1
In the limit Vi scatt/ (YL,0 —va) > 1, the distribution 0
satisfies a diffusion equation: 10 s 0 5 10
of (Q,t) T 0 3f (Q,1) OV, WVeeatt
R (92 =C|f, F 9
ot 290 o o0 |/ Fol 0 Sftcatt/(Fo'lwh | *scar)
With the spontaneously emerged collisional resonance 03 ()
functions (both satisfy /=, F(2)d2 =1): 0 Sird(Fo'lwh | “vid
1 1 o° (s 3 -0.3
R () = — —s°/3
K( ) TVK (1 + QZ/V%() Rscatt (Q) TVscatt /0 ds €08 (Vscatt) ° -0.6
055 -5 0 5 10
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Self-consistent formulation of collisional quasilinear

transport theory

| =cirm

T 2
200 D‘“’g‘ RE) =5

D=5 =, a0R2E0  dlad]* fdt =2 () ) o

A QL theory naturally emerges when considering kinetic theory near threshold when
collisions occur at a time scale faster than the phase mixing time scale.

* The QL plasma system automatically replicates the nonlinear growth rate and the
wave saturation levels calculated from full kinetic theory near marginality, with a
rather complex time-delayed integro-differential equation (Berk, Breizman and
Pekker, Phys. Rev. Lett. 1996) |wbsatl = 84 (1 = va/v1.0)" " vic
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* A systematic QL theory has been derived from first principles near an instability
threshold.

* Indicates that QL theory is applicable to a single discrete resonance (with no
overlap), provided that stochasticity is large enough

* Collisional resonance broadening functions emerge spontaneously

* Major arbitrariness of collisional QL theory (the shape of the resonance functions)
has now been removed

* The quasilinear system (with the calculated broadening functions) systematically
recovers the mode saturation levels for near-threshold plasmas previously
calculated from nonlinear kinetic theory

* Resonance functions are being implemented into the Resonance Broadening
Quasilinear (RBQ) code
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Verification: analytical collisional mode evolution near

threshold

Amplitude A vs time t for the full cubic equation
(green) and the analytical solution (black)

* Near marginal stability, the wave amplitude

evolution is governed by [Berk, Breizman and 20l (b)
Pekker, PRL 1996] 40 ~
30
L = AW - [arm [} dz2 At - 2)
t=22 503122 (22/3+y) 107 20}
x [, 7 dyeTVers® 5 yA(t—z—y)A*(t—2z—y)} - 0 ’
‘?eff=5
* An approximate analytical solution is found when : oL . .
Depr > 1:[Duarte & Gorelenkov, NF 2019] 0 10 20 30 40 50 x1003 10 20
t
A(t) = A0)e 500 12
V1 —gA2(0) (1 — e2t) 400 (€) 9 (d)
g= de’HF(l/3 (2)""%is a resonance-averaged ;’88 6
collisional contribution evaluated by NOVA-K 100 5 o0 3 V.x=100
eff =
0 0
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Resonance-broadened quasilinear (RBQ) diffusion model

Formulation in action and angle variables?3
e Diffusion equation:

or_ o Do (|
a—a( 2 DU”)) aﬁ( o

ni,p,m,m’

Broadened delta, a function of A}

v scatt,] 8 12

) ),
I,
* Mode amplitude evolution:

dC7(t)

n\T) o 2
dt 2 (’YL,n ’Yd,n) Cn(t)

eigenstucture
information

Physics-based determination of the
window function is pending

Broadening is the platform that allows for momentum and energy exchange between

particles and waves: AQ = aw b
b —|_ eff 1Berk, Breizman, Fitzpatrick and Wong, NF 1995.

ZKaufman PoF, JPP 1972 (no broadening due to growth rate!).
3Gorelenkov, Duarte, Podesta and Berk, NF 2018.
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Broadening is adjusted to replicate analytical predictions

for the mode saturation amplitude of single modes

Definitions: initial linear growth rate 7L, mode damping rate Vd and trapping (bounce)
frequency wy(proportional to square root of mode amplitude)

Collisionless case Collisional cases
* *
 Close to marginal . F{’vlrbflr_?m marginal
* ili Nty
Undamped case stability: vee> o, stability: w, > v
_ 1/4 _ 1/3
Wh = 32’YL Wy = 1.18]/eff (VL Yd) wp = 1.2Veff (')}L ')}d)
Va Va

Bounce (trapping) frequency wy, VS time t Bounce ('trapping) flrequency l"’b bl time't
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@ Expected saturation levels from analytic theory are shown by — — — o
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same form of the function calculated by Dupree [T. H. Dupree, Phys.
Fluids 9, 1773 (1966)] in a different context, namely in the study of
strong turbulence theory, where a dense spectrum of fluctuations
diffuse particles away from their free-streaming trajectories. In that
case, the cubic term in the argument of the exponential is
proportional to a collisionless diffusion coefficient.

the reduction of reversible equations of motion into a diffusive
system of equations that governs the resonant particle dynamics
without detailed tracking of the ballistic motion

The collisional broadening of resonance lines is a universal
phenomenon in physics (e.g., atoms emission/absorption spectral
profile in atomic physics)
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