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Runaway electrons

 Runaway electrons (REs) : collisionless acceleration of electrons in magnetized 

plasma 

 Continuous external electric field in Ohmic plasmas [Dreicer mechanism]

 Plasma disruption         secondary generation mechanism [Rosenbluth and Putvinskii (1997)]

 REs easily go to relativistic regime with 

 Once generated, they cause significant damage on surrounding plasma facing components

serious concern in reactor-scale experiments
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Relativistic formulations

 Covariant vs. non-covariant formulations of RE orbit :

 Covariant formulation uses four vector coordinates [Boghosian (1987)]

 Non-covariant formulation is more applicable and easy to see nonrelativistic 

limit. [Cary & Brizard (2009) Rev. Mod. Phys., White & Gobbin (2014) PPPL-5078]

 RE speed approaches to        , necessary to develop singularity-free 

formulation

 A certain Lie-like transform to avoid                singularity. [Burby & Ellison (2017) 

PoP 24, 110703]

 For this work, try to extend the formulation to relativistic guiding-center theory.

 Theoretical modeling of its generation & termination is one of important subjects 

in ITER physics

 Study guiding-center motion of an RE 
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Outline

• Simulation model

 Relativistic non-canonical guiding-center phase space 

Lagrangian

 Toroidally regularized relativistic guiding-center Lagrangian

• Simulation results

• Conclusion and future works



5

Relativistic guiding-center Lagrangian

 Non-canonical relativistic guiding-center Lagrangian

 Equations of motion

 Nonrelativistic correspondence
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 Phase space volume and conserved quantities
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Toroidally regularized guiding-center Lagrangian
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 Lie-like transform
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 Toroidally regularized guiding-center Lagrangian
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 Equations of motion
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Orbit calculation

 Guiding-center orbits and full Lorentz orbit are agreed well for not so high 

kinetic energies.

10MeV v///v=-0.9 relativistic passing electron in a 
KSTAR equilibrium magnetic field [#21576 13.81s]

10MeV v///v=-0.8 relativistic and 
non-relativistic electron orbit 
comparison [KSTAR #10902 2.0s]
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High kinetic energy cases

 Guiding-center orbits starts to deviate for high kinetic energy case. 

50MeV, 70MeV and 100MeV(left to right) passing (v///v=-0.9) electron 
orbits in a KSTAR equilibrium magnetic field [#21576 13.81s]
100MeV case, the transformed coordinates fitted well for the gyro-
averaged particle orbit, but it is not always.



9

Orbit classification

KSTAR equilibrium magnetic field [#10902 2.0s]

AP-L

AP-C

PP-L

PP-C

T-C

T-L Po

PP-L : Parallel Passing Loss

PP-C : Parallel Passing Confined

AP-L : Anti-parallel Passing Loss

AP-C : Anti-parallel Passing Confined 

T-L : Trapped Loss

T-C : Trapped Confined

Po : Potato

20MeV electron

10MeV electron 50MeV electron

70MeV electron 100MeV electron

∃ minimum energy for the orbit confinement

confined region disappears
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Concentric circular magnetic field
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B0=1T, q0=1.414, R0=1m
200keV (v///v=-0.21) trapped ion orbits

B0=1T, q0=0.1, R0=1m
1MeV (v///v=-0.7) passing ion orbits

singular case
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singularity

For large p// and/or small twist length

singularity could take place [Wimmel, 

Boozer, etc.]
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For the concentric circular 
magnetic field case (B0=1T), the 
minimum electron velocity which 
makes             can be written as *
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Figure shows corresponding kinetic 
energy as function of the safety 
factor q0
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Conclusions

 Two guiding-center equations of motion are implemented.

 Toroidally regularized guiding-center theory applied to remove potential singularity 

for the             case

 Caveats : the coordinate transformations do not guarantee accurate orbits

 The higher order correction is unclear.

 The applicability of the toroidally regularized case may increases when the safety 

factor is small, such as reversed field pinch (RFP) system.

 On-going and future works :

 What causes orbit deviation and how to remedy it.

 How RE orbits modify when some perturbations given outside.

 Application to other system, space, RFP, etc.
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