Impact of poloidal convective cells on transport processes with kinetic electrons
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Recently, a lot of attentions have been paid to the role of poloidal asymmetries of electrostatic potential (convective cells) in magnetic confined
plasmas. Since this kind of structures can be driven by plasma turbulence and they are instrumental in neoclassical transport, consistent
modeling of turbulence and neoclassical transport by full-F gyrokinetic code is essential to study this effect. Unfortunately, the conventional
electron model used in full-F code filters out the convective cells, we could not have studied their impact on transport. In the present work, we
use the newly proposed electron model which can handle the convective cells and compare the results using the previous model. It turned out

that the damping rate and frequency of Geodesic acoustic mode are modified due to the filter. In the flux-driven turbulence simulation, it turned
out that the convective cells enhance the neoclassical transport but do not have large impacts on profile formation.

l Background: 5D full-F gyrokinetic simulation

Problem size: ~ 10'® High simulation cost e First principle full-f 5D gyrokinetic model is employed for plasma

3D Space: (r 9 ¢) 2D velocity space: (v, i) turbulence simulation [1,2]
f ..* Resolving machine scale (~ m) with turbulence mesh (~ cm)

| { e Solving profile and fluctuation without scale separation (full-F approach)
‘*w Modeling neoclassical and turbulence transport consistently
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e Simplified model employed (e.g. adiabatic electron model) compared to
local flux tube code due to larger simulation costs

Introducing kinetic electrons for modeling Trapped Electron Mode (TEM)
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e Same residual level in both model e Ambipolar condition satisfied in both models @ | o
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e Lower damping rate and higher e Difference in the amplitude can be explained by convective cells ™" ™ fosemum etel, Fve-ew Bt (1559

frequency in Lanti's model Particle transport by magnetic drift can be enhanced by convective cells [5,6]
l Impact of convective cells on transport: neoclassmal transport enhanced
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e ExB flow shear, ion temperature gradient
and total energy flux is almost the same

Convective cells have few impacts on
turbulence transport
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® The enhanced energy transport by magnetic drift

Convective cells reduce the energy transport by
ExB flow
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P> Convective cells enhance the energy transport by magnetic drift



