Impact of poloidal convective cells on transport processes with kinetic electrons Yuuichi ASAHI¹, Yasuhiro Idomura², Masatoshi Yagi¹ **P2-18** QST¹, JAEA²

Recently, a lot of attentions have been paid to the role of poloidal asymmetries of electrostatic potential (convective cells) in magnetic confined plasmas. Since this kind of structures can be driven by plasma turbulence and they are instrumental in neoclassical transport, consistent modeling of turbulence and neoclassical transport by full-F gyrokinetic code is essential to study this effect. Unfortunately, the conventional electron model used in full-F code filters out the convective cells, we could not have studied their impact on transport. In the present work, we use the newly proposed electron model which can handle the convective cells and compare the results using the previous model. It turned out that the damping rate and frequency of Geodesic acoustic mode are modified due to the filter. In the flux-driven turbulence simulation, it turned out that the convective cells enhance the neoclassical transport but do not have large impacts on profile formation.

Background: 5D full-F gyrokinetic simulation

Problem size: $\sim 10^{10}$ **High simulation cost 3D Space:** (r, θ, ϕ) **2D velocity space:** (v_{\parallel}, μ)

- First principle full-f 5D gyrokinetic model is employed for plasma turbulence simulation [1,2] Resolving machine scale (\sim m) with turbulence mesh (\sim cm)
- Solving profile and fluctuation without scale separation (full-F approach) Modeling **neoclassical** and **turbulence** transport consistently
- Simplified model employed (e.g. adiabatic electron model) compared to **local flux tube code due to larger simulation costs**

 $tv_{\rm ti}/R_0 \sim 100$

-0.030

-0.045

Introducing kinetic electrons for modeling **Trapped Electron Mode (TEM)**

[1] Y. Idomura et al., Comput. Phys. Commun (2008) [2] V. Grandgirard et al, Comput. Phys. Commun (2016)

Hybrid electron models in full-F gyrokinetic simulation codes

Idomura JCP 2016 [3] ____ Clanti CPC 2019 [4] **Turbulent component:** $-\nabla_{\perp} \cdot \frac{\rho_{\text{ti}}}{\lambda_{\text{D}c}^2} \nabla_{\perp} \phi_{n\neq 0} + \frac{\alpha_p}{\lambda_{\text{D}c}^2} \phi_{n\neq 0} = 4\pi e \left[n_i - n_{e,t} \right]_{n\neq 0}$

n=0 component:

 $\phi_{n=0,m\neq 0} \to 0$ **Removing convective cells [5]**

n=0 component:

 $-\nabla_{\perp} \cdot \frac{\rho_{ti}^2}{\lambda_{\Xi}^2} \nabla_{\perp} \phi_{n=0} = 4\pi e [n_i - n_{e,t} - \langle n_{e,p} \rangle - n_{e,p} \frac{e\phi_{n=0}}{T_{\Xi}}]_{n=0}$ No numerical filter on ϕ

 \bigcirc

• The hybrid electron models for nonlinear simulations must satisfy the following properties

	Idomura JCP 2016	Lanti CPC 2019
GAM damping	Frequency, damping rate modified	Frequency and damping rate agreed with SW theory
Zonal flow residual	Agreed with RH theory	Agreed with RH theory
Ambipolar condition	Ambipolar condiiton satisfied	Ambipolar condiiton satisfied
Convective cells	Filtered out	Present

- Both model suppresses passing electrons to avoid numerical instability which stems from the lack of electromagnetic effects in full-F codes
- Dynamics of convective cells may matter main species [5], Impurities [6]

[3] Y. Idomura et al., J. Comput. Phys. (2016) [4] E. Lanti et al, Comput. Phys. Commun (2019) [5] Y. Asahi et al, Plasma Phys. Control. Fusion (2019) [6] P. Donnel et al, Plasma Phys. Control. Fusion (2019)

Model verification: Zonal flow damping and Ambipolar condition Ambipolar condition in neoclassical limit

Idomura JCP 2016

 n_i/n_0

3.0

Time tv_{ti}/R_0 Same residual level in both model

- Lower damping rate and higher frequency in Lanti's model
- Ambipolar condition satisfied in both models
 - [7] H. Sugama et al., J. Plasma Phys. (2006) [8] M. N. Rosenbluth, et al., Phys. Rev. Lett. (1998) Difference in the amplitude can be explained by convective cells Particle transport by magnetic drift can be enhanced by **convective cells** [5,6]

Impact of convective cells on transport: neoclassical transport enhanced

Conclusions

Verifications of hybrid electron models for zonal flow damping and ambipolar condition

Convective cells enhance the energy transport by magnetic drift