

Hybrid Simulation of Global Alfvén Eigenmode and Energetic Particle Mode in Heliotron J, a Low Shear Helical Axis Heliotron

P. Adulsiriswad¹, Y. Todo², S. Yamamoto³, S. Kado⁴, S. Kobayashi⁴, S.Ohshima⁴, H. Okada⁴, T. Minami⁴ Y. Nakamura¹, A. Ishizawa¹, T. Mizuuchi⁴, S. Konoshima⁴, K. Nagasaki⁴,

1. Graduate School of Energy Science, Kyoto University, Uji, 611-0011 Japan, 2. National Institute for Fusion Science, Toki, Gifu 509-5292, Japan

3. Naka Fusion Institute, National Institutes for Quantum and Radiological Science and Technology, 4. Institute of Advanced Energy, Kyoto University, Uji, 611-011, Japan

- Understanding the **interplay** between energetic particle and MHD wave (Energetic particle driven mode) is important to achievement a self-sustainable fusion plasma.
- MEGA¹ code solves time evolution of energetic particle-driven mode in real space. \rightarrow Successfully apply to Tokamak and planar axis stellarator/heliotron (LHD).
- Objective of this study is to **apply** MEGA code to study EP-driven mode in advanced stellarator/heliotron configuration (Heliotron J).
 - 1. Clarify the interplay between the energetic particle and MHD wave in low equilibrium field period stellarator.
 - 2. Demonstrate nonlinear hybrid simulation in helical axis stellarator/heliotron.

Numerical Model : MEGA¹

• Hybrid simulation model, where bulk plasma and energetic particle are presented

VI. Simulation Results

A. Observation of Global Alfvén eigenmode :

ID#78

by full MHD equations and drift kinetic equations, respectively.

A. Full MHD Equations B. EP Drift Kinetic Equations (1) $\vec{u} = \frac{v_{||}}{||B^*||} \left[\vec{B} + \left(\frac{m_{\alpha}v_{||}}{Z_{\alpha}||B||} \right) B\nabla \times \vec{b} \right]$ $(\mathbf{1})\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho\vec{\nu}) + \nu\nabla^2(\rho - \rho_{eq}) = 0$ $+\frac{\vec{E}\times\vec{b}}{||B^*||}-\frac{\mu\nabla B\times\vec{b}}{Z_{\alpha}e||B||}$ (2) $\rho \left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right] = \left(\frac{\nabla \times \vec{B}}{\mu_0} - \vec{J'}_{\alpha} \right) \times \vec{B} \dots$ *E*, *B* $-\nabla p - \left[\nabla \times (v\rho\nabla \times \vec{v}) + \frac{4}{2}\nabla (v\rho\nabla \cdot \vec{v})\right]$ (2) $m_{\alpha}v_{||}\frac{dv_{||}}{dt} = \frac{v_{||}}{||B^*||} \left[\vec{B} + \left(\frac{m_{\alpha}v_{||}}{Z_{\alpha}||B||}\right)B\nabla \times \vec{b}\right]...$ (3) $\frac{\partial p}{\partial t} = -\nabla \cdot (p\vec{v}) - (\gamma - 1)p\nabla \cdot \vec{v} \dots$ $\cdot \left[\mathbf{Z}_{\boldsymbol{\alpha}} \vec{E} - \mu \nabla B \right]$ $+\eta \left(\frac{\nabla \times \vec{B}}{\mu_o} - \vec{J'}_{\alpha}\right) \delta \vec{J} + v\rho(\gamma - 1)(\nabla \times \vec{v})^2 \dots$ $(\mathbf{3})\,\vec{J'}_{\alpha} = \int \frac{v_{ll}}{||\boldsymbol{B}^*||} \left(\left[\vec{B} + \left(\frac{m_{\alpha}v_{ll}}{Z_{\alpha}} ||\boldsymbol{B}|| \right) B\nabla \times \vec{b} \right] \dots$ $+\frac{4}{3}v\rho(\gamma-1)(\nabla\cdot\vec{v})^2+\chi\nabla^2p$ $-\frac{\mu \nabla B \times \vec{b}}{Z_{\alpha} e ||B^*||}) f dv^3 + \nabla \times \vec{M}$ J_{α} (4) $\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E};$ (5) $\mu_0 \vec{J} = \nabla \times \vec{B};$ $\vec{M} = -\int \mu \hat{b} f d^3 v$, (6) $\vec{E} = -\vec{v} \times \vec{B} + \eta (\vec{J} - \vec{J}_{eq})$

Fig. 6.1: (*a*) *Spatial profile of radial velocity* harmonic of |n| = 2 toroidal mode family. *Time evolution of (b) amplitude, cosine and sine and* (c) frequency of n/m=2/4 radial velocity harmonic

- n/m=2/4 was observed as a **single** poloidal dominant mode.
- Verify as Global Alfvén eigenmode.
- Validate with experiment and good agreement with the continua.

1.1

Fig. 6.2: (a) Spatial profile of radial velocity harmonic of |n| = 1 toroidal mode family. *Time evolution of (b) amplitude, cosine and sine and* (c) frequency of n/m=2/4 radial velocity harmonic

- $|\mathbf{n}| = 1$ toroidal mode filter is applied to reduce numerical noise.
 - \rightarrow Significantly lower growth rate than n/m=2/4 GAE.
 - \rightarrow Localized in the **core region**.
 - \rightarrow Not an experimental observed EPM.

III. Experimentally Observed Energetic Particle-driven Mode

- Heliotron J is a **low shear helical axis** heliotron with 4 equilibrium field period.
 - \rightarrow Global Alfvén eigenmode (GAE)^{2,3}

 - \rightarrow Low frequency Alfvénic mode (BAE?)⁴

Energetic Particle Dynamics : В.

Fig. 3.1: Power spectrum density of magnetic probe signal and time evolution of plasma parameters.

r/a Fig. 3.2: Density fluctuation signal from BES for (a) f=78-108 kHz and (b) f=120-155 kHz

IV. MHD Equilibrium, Shear Alfvén Continua :

Fig. 6.3: Total Distribution (f) of energetic particle at the saturation point of n/m=2/4 GAE.

- n/m=2/4 GAE is destabilized by energetic particles with velocity of $0.13v_{A0}$, $0.18v_{A0}$ and $0.3v_{A0}$.
 - \rightarrow Neglect toroidal mode coupling (j=0) ωR $\left(n+j\nu N_{fp}-\frac{\iota}{a}\right)$

Fig. 6.4: Perturbed distribution (δf) of energetic particle at the saturation point of n/m=2/4 GAE.

EP Poloidal **EP** Toroidal Poloidal Mode Toroidal orbit frequency Coupling orbit frequency Mode frequency $-(n^{\dagger}+j\nu N_{fp})\dot{\omega}_{\phi}$ ω **Toroidal Mode** family coupling

VII.Discussion

- n/m=2/4 Global Alfvén eigenmode has been destabilized in nonlinear hybrid simulation model and benchmarked with experimental observation from magnetic probe and density fluctuation signal from BES.
- Global Alfvén eigenmode in Heliotron J was coupled with energetic particle \bullet with the energy of $0.13v_{a0}$, $0.18v_{a0}$ and $0.3v_{a0}$ for far passing particle.
 - \rightarrow For passing particle, this energy ranges correspond to drift harmonic l of +5, +6 and +7, respectively, which corresponds to sideband resonance.

Conclusion & Future Works

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 **r/a Fig. 4.3:** (a) Shear Alfvén continua for n=1 and (b) n=2 toroidal mode families.

Equilibrium Energetic Particle Distribution :

- Bump-on-tail energy distribution is utilized due to finite charge exchange loss⁵.
- Destabilization effect from spatial, velocity and **pitch angle** gradient are included.

- Hybrid simulation code MEGA has been incorporated in Heliotron J configuration.
- **Global Alfvén eigenmode** has been **reproduced** in the simulation, while **energetic** particle mode (EPM) was not observed.
 - \rightarrow n/m=1/2 oscillation was observed with low amplitude.
- Toroidal mode coupling effect in Heliotron J (low equilibrium field period) will be studied with filter.
- New methodology will be developed to simulate the Alfvén eigenmode in the peripheral plasma region.
 - \rightarrow Full-f & finite energetic particle pressure in the vacuum region.

IX. References

[1] Y. Todo and T. Sato, Phys. Plasma 5, 1321 (1998) [2] S. Yamamoto, et. al, Fusion Science and Technology **51:1**, 92-96 (2007) [3] S. Yamamoto, et. al, Nuclear Fusion **57**, 126065 (2017) [4] L.G. Zang, et. al, Nuclear Fusion **59**, 056001 (2019) [5] M. Kaneko, et. al, Plasmas, Fusion Science and Technology, **50:3**, 428-433 (2005) [6] Ya. I. Kolesnichenko, et. al, Physics of Plasmas 9, 517 (2002)