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JT-60U experiments:  Abrupt Large-amplitude Events (ALE)

Found
magnetic
islands after
large event.

Bierwage et al,
Nature Comm.
9 (2018) 3282.

Why?
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- Outline -
 

1. Code & model 
Hybrid MHD-PIC

 

2. Sensitivity study for ALEs
Numerical resolution, dissipation

3. EP-induced magnetic islands
Magnetic chaos, resistive decay
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Hybrid model

Energetic particles: Gyrokinetic PICBulk plasma: Single-fluid MHD

‖ streaming, ⊥ drifts, gyroaverage,
collisions, sources, wall losses.

MHD waves, reconnection EP motion

Long-wavelength Alfvén modes.
Dissipation of small-scale struct.

∂ρb

∂ t
=−∇⋅(ρbδ ub) , μ0 J = ∇×B

ρb

∂ub

∂ t
=−ρbu b⋅∇ ub − ∇ pb + (J−Jh,eff )×B

∂B
∂ t

=−∇×E, E = −ub×B + ηδ J

+ νρb (Γ−1 ) [ (∇ ×ub )
2
+
4
3

(∇⋅ub )
2] + χ ∇

2pb

− [∇ ×(νρb ∇×ub ) +
4
3

∇ (νρb ∇⋅ub )]

∂pb

∂ t
=−∇⋅(pbub)− (Γ−1) [pb ∇⋅ub + η(J−Jh,eff )⋅δ J ]

Jh,eff

B, E

Gyro-
avg.

m v||

d v ||

dt
= v || *⋅(qE− μ ∇ B)

dμ

dt
= 0 + O(β ϵδ) with ϵδ∼

ρ⊥

LB
∼ ω

ΩL
≪1

dR gc

d t
= −

μ

qB*
∇ B×b̂⏞
v B

+
v ||

B*
(B + ρ||B∇ ×b̂)
⏞

v || *

+
E×b̂
B*

⏞
vE *

≡ Ugc

μ ≡
m v⊥

2

2B
, ρ|| ≡

v ||
ωL
, B * ≡B [1+ρ|| b̂⋅(∇×b̂)] , b̂ ≡

B
B

v '|| =
v ||

v
(v+Δ vL )+

v⊥

v
Δ vTsinΩ , v '⊥=√ (vL+Δ vL )

2
+Δ vT

2
−(v ' || )

2

MEGA
code 

[Y. Todo,
NIFS]

Todo et al,
 Phys. Plasmas 5
 (1998) 1321;
 Nucl. Fusion 45
 (2014) 104012.
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Hybrid model

Energetic particles: Gyrokinetic PICBulk plasma: Single-fluid MHD

‖ streaming, ⊥ drifts, gyroaverage,
collisions, sources, wall losses.

MHD waves, reconnection EP motion

Long-wavelength Alfvén modes.
Dissipation of small-scale struct.
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B
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v ||
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v⊥

v
Δ vTsinΩ , v '⊥=√ (vL+Δ vL )

2
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−(v ' || )

2

MEGA
code 

[Y. Todo,
NIFS]

Todo et al,
 Phys. Plasmas 5
 (1998) 1321;
 Nucl. Fusion 45
 (2014) 104012.

∂ρb

∂ t
=−∇⋅(ρbδ ub) , μ0 J = ∇×B

ρb

∂ub

∂ t
=−ρbu b⋅∇ ub − ∇ pb + (J−Jh,eff )×B

∂B
∂ t

=−∇×E, E= −ub×B + ηδ J

+ νρb (Γ−1 ) [ (∇×ub )
2
+
4
3

(∇⋅ub )
2] + χ ∇

2pb

− [∇×(νρb ∇×ub ) +
4
3

∇ (νρb ∇⋅ub )]

∂pb

∂ t
=−∇⋅(pbub)− (Γ−1) [pb ∇⋅ub + η(J−Jh,eff )⋅δ J ]

(t): 4th-order Runge-Kutta,
Δt

mhd
 ≈ 1 ns

(R,φ,Z): finite differences,
non-slip b.c.

EP current density pert.
Viscous,

resistive,
thermal diffusion.
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ON continuously

Long-time simulation (100 ms scale)

► Multi-phase method: Speeds up the simulation by a factor 2-3.

ON
1 ms

OFF
4 ms

ON
1 ms

Beam
injection
starts at 
time t = 0

…

…

Todo et al, Nucl. Fusion 54 (2014) 104012.

EP motion
+ src.+coll.

MHD
OFF
4 ms

Fast ion tail forms
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ON continuously

Long-time simulation (100 ms scale)

► Multi-phase method: Speeds up the simulation by a factor 2-3.

ON
1 ms

OFF
4 ms

ON
1 ms

► Major milestone reached: Simulated sequences of 3 ALEs.

Bierwage et al, Nature Comms. 9 (2018) 3282.

…

…

EP motion
+ src.+coll.

MHD
OFF
4 ms
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Sensitivity study for ALEs
- Numerical resolution

- Dissipation
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Procedure

► Selected ALE #2 at t = 129~130 ms.
 

→ Use snapshot at t = 129 ms
     as new initial condition.

MEGA mult-phase
simulation

Short-time initial-value simulations.
Without sources and collisions.



10

Procedure

μ
0

-1η = ν = χ = 1.0 × 10-6 v
A0

R
0

    0.5 × 10-6

 

    0.3 × 10-6

N
R
  × N

Z
 × N

φ
N

P
Δt / ns

384×352×96 6.9 M 1.0

800×720×96 27.8 M 0.5

► Selected ALE #2 at t = 129~130 ms.
 

→ Use snapshot at t = 129 ms
     as new initial condition.

MEGA mult-phase
simulation

► Simulate few millisecs. with different parameter settings:
 

(1) Check numerical sensitivity
Resolution,
noise

Short-time initial-value simulations.
Without sources and collisions.

(2) Reduce dissipation coeff.
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Sensitivity study: 1. PIC noise effects

Noise floor

(# particles)

7M
particles

28M
particles

More particles
per cell give

lower noise level

Suspicion:

PIC noise aids
ALE trigger (a little).
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Sensitivity study: 2. Spatial resolution

2 × finer
R,Z mesh

Well reproduced.

Constant # of
particles per cell 
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Sensitivity study: 3. Dissipation effect (η = ν = χ)

Initial conditions
from original

long-time
simulation.

η =  10-6

η = 0.5 × 10-6

η = 0.3 × 10-6

Long-time simulation

Short-time
simulations

Weaker dissipation ...
(a) reduces ALE threshold
(b) causes similar EP transport
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Sensitivity study: 3. Dissipation effect (η = ν = χ)

η =  10-6

η = 0.5 × 10-6

η = 0.3 × 10-6

Before After ALE

Fast ion transport
β

EP
(r) [%]

Time

β
EP

Anticipate similar
ALE periodWeaker dissipation ...

(a) reduces ALE threshold
(b) causes similar EP transport
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EP-induced magnetic islands
- Magnetic chaos
- Resistive decay
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Before large event

After ALE

Islands

n = 1

n = 2

n = 3

m = 2 EPM

m = 4,5 TAE

m = 5,6 TAE

Mode amplitude evolution Safety factor profile

Magnetic field Poincaré plot

No islands.
Only waves
(40-50 kHz).

Wiggly flux surfaces
= shear Alfvén waves.

ψ

120
 

80
 

40
 

0

120
 

80
 

40
 

0

120
 

80
 

40
 

0

Before ALE

Frequency
[kHz]

Radius
r/a
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After large event

After ALE

Mode amplitude evolution Safety factor profile

Magnetic field Poincare plot

Before ALE

Questions:
(1) How did they form?
(2) How do they evolve?

ψ

Moderately large
magnetic islands.
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ALE ramp

Before ALE

After ALE

No islands.
(only waves)

Islands

129.5

129.3

Islands appear within < 0.2 ms,
during B chaos & avalanche.

Poincaré plots
of B = B

eq
 + δB.

Ignored δE×B.

Mode amplitude evolution

Apparent left-shift due to
plotting left to right.

ψ
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ALE ramp

Before ALE

After ALE

No islands.
(only waves)

Islands

129.5

129.3

Mode amplitude evolution

Note: @ t ≈ 129.5 ms system already returned
to state of only weak linear instability.
→ Most part of ALE is nonlin. overshoot.

Reset fields.
Randomize
ptcls. along φ.

Islands appear within < 0.2 ms,
during B chaos & avalanche.

ψ
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ALE peak

Before ALE

After ALE

No islands.
(only waves)

Islands

129.5

129.6

129.3

130.0

Mode amplitude evolution

B chaos in entire
core plasma.
Island width
w / a ~ 20%.

ψ
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ALE peak

Before ALE

After ALE

No islands.
(only waves)

Islands

129.5

129.6

129.3

Mode amplitude evolution

Local perturbation in plasma
current density reaches 100%.

130.0

Toroidal
current
density.

ψ
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After ALE: Multi-time-scale decay

Before ALE

After ALE

No islands.
(only waves)

Islands

129.6 ms

Toroidal
current
density.

∂B
∂ t

=−∇×E, E= −ub×B + ηδ J

∂B
∂ t

=−∇×E, E= −ub×B + ηδ J

After ALE

η/μ
0
 = 10-6 v

A0
R

0
 ~ w2/τ

η

v
A0

/R
0
 ~ 106s-1, R

0
/a ~ 3

w/a = 0.1 → τ
η
 ~ 1 ms

Time scales
(Δr / a ~ 0.1):

1~10
μs

100
μs

1~few ms

Alfvén
continuum
phase mixing

EP
avalanche

Current
diffusion

130.0 ms

Tearing-stable system
returns to unperturbed state.

Major part of pert. decays faster
(~ 0.2 ms) than resistive time (~ 1 ms).

Presumably: NL structs. vanish with avalanche.

 ALE peak
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ALE-induced islands: Resitivity dependence

η =  10-6 0.5 × 10-6

ψ

Smaller resisitivity yields
similar or larger islands!

 

Because:
similar/larger ALE, slower decay

Snapshot 0.5 ms after ALE:
n=1 similar
n=2,3 larger

118.5             119               119.5
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Somewhat irregular decay on millisec scale
A B C A B C

A

B

C

ψ ψ

η =  10-6 0.5 × 10-6

Besides
resistive
decay:
- nonlin.
  coupling
- EPs
- waves
may still
play a role.

118.5             119               119.5
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Summary: Simulations show reconnection during ALEs

After ALE

No islands.
(only waves)

IslandsPlasma
current

✔ Confirmed sim. results with
higher resolution & lower noise.
 

✔ Lower dissipation reduces
threshold for ALE onset
but amplitude remains large.

 
✔ Island decay time:

  τ
resistive

~ 1 ms
 

✔ Island formation to be clarified:
  τ

island
 ~ 0.2 ms <  τ

resistive

Reducing dissipation by 1/2
gives similar (or larger) islands.

Results:

Time

β
EP

Similar
period?

Tentative conclusion:
► Phenomenon seems to be physical
     within realm of resistive MHD
     (not a numerical artifact).

Why?
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Discussion: Open questions & relevance

Plasma
current

Before

After

C
h
a
o
s

To be examined:

Relevance:
● May explain enhanced

electron transport observed
during ALEs in JT-60U exp.

 
● May also be relevant for

space plasmas; e.g.
“flux transfer events (FTE)”
in magnetopause.

● How can 50 kHz Alfvén waves
reconnect B field?
 

● Analyze combined effect
of chaotic B & δE×B
on EPs, bulk (… & vice versa).
 

● Experimental check?

Ishikawa et al, Nucl. Fusion 45 (2005) 1474.

Uberoi, J. Plasma Phys. 62 (1999) 345.
Prikryl et al. Ann. Geophys 20 (2002) 161.

Why?
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Plasma
current

Before

After

C
h
a
o
s

Question: How can 50 kHz Alfvén waves reconnect B field?

Educated guesses for parity mixing mechanisms:
 

(a) Chaotic B field effect:    (b) Collective NL interaction with EPs:
Interference of large-amp. MHD    Interactions with both oscillating δE×B
waves with multiple helicities m / n.    and quasi-steady δB causes phase space
→ Mixed-parity low-frequency beats?    to be “reconnected” around resonances.
→ Drive 3D reconnection at    → EP phase space islands are
     many locations?         imprinted onto B field via EP current?
→ Merging
     micro-islands?

δB, ω = 0
resonances

Normalized pol. flux ψ

Norm. canonical tor. momentum p

See also:
Thursday, P2-22
Shinohara et al.

Large
B drift
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