Magnetic Reconnection during Fast Ion Driven Alfvenic Activity

3-6 September 2019 Shizukoa City, Japan

Presented by Andreas Bierwage

OST Fusion Institutes

16th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

Magnetic Reconnection during Fast Ion Driven Alfvenic Activity

3-6 September 2019 Shizukoa City, Japan

Presented by Andreas Bierwage

Collaborators:

Kouji Shinohara (QST), Yasushi Todo (NIFS), Nobuyki Aiba (QST), Masatoshi Yagi (QST)

- HPC: Helios, JFRS-1 at IFERC-CSC in Rokkasho, JP
 - ICE X of JAEA in Tokai, JP
 - K Computer of the RIKEN AICS in Kobe, JP

Funding:

- JSPS Grant-in-Aid for Scientific Research (16K18341)
- MEXT "Priority Issue on Post-K computer" (Accel. Development of Innovative Clean Energy Systems)

16th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

Magnetic Reconnection during Fast Ion Driven Alfvenic Activity

3-6 September 2019 Shizukoa City, Japan Presented by Andreas Bierwage

- Outline -

1. Code & model Hybrid MHD-PIC

- 2. Sensitivity study for ALEs Numerical resolution, dissipation
- **3. EP-induced magnetic islands** Magnetic chaos, resistive decay

Hybrid model

$$\frac{\partial \rho_{b}}{\partial t} = -\nabla \cdot (\rho_{b} \delta u_{b}), \qquad \mu_{0} J = \nabla \times B$$

$$\rho_{b} \frac{\partial u_{b}}{\partial t} = -\rho_{b} u_{b} \cdot \nabla u_{b} - \nabla p_{b} + (J - J_{h,eff}) \times B$$

$$-\left[\nabla \times (v\rho_{b} \nabla \times u_{b}) + \frac{4}{3} \nabla (v\rho_{b} \nabla \cdot u_{b})\right]$$

$$\frac{\partial B}{\partial t} = -\nabla \times E, \qquad E = -u_{b} \times B + \eta \delta J$$

$$\frac{\partial p_{b}}{\partial t} = -\nabla \cdot (p_{b} u_{b}) - (\Gamma - 1) [p_{b} \nabla \cdot u_{b} + \eta (J - J_{h,eff}) \cdot \delta J]$$

$$+ v\rho_{b} (\Gamma - 1) \left[(\nabla \times u_{b})^{2} + \frac{4}{3} (\nabla \cdot u_{b})^{2} \right] + \chi \nabla^{2} p_{b}$$

$$J_{h,eff}$$

$$J_{h,eff}$$

$$J_{h,eff}$$

$$\frac{dR_{gc}}{dt} = -\frac{v_{B}}{-\frac{\mu}{qB^{*}}} \nabla B \times \hat{b} + \frac{v_{\|}^{*}}{B^{*}} (B + \rho_{\|} B \nabla \times \hat{b}) + \frac{E \times \hat{b}}{B^{*}} \equiv U_{gc}$$

$$mv_{\|} \frac{dv_{\|}}{dt} = v_{\|} \cdot (qE - \mu \nabla B)$$

$$\frac{d\mu}{dt} = 0 + O(\beta \epsilon_{\delta}) \text{ with } \epsilon_{\delta} \sim \frac{\rho_{\perp}}{\Omega_{L}} \ll 0$$

$$\mu \equiv \frac{mv_{\perp}^{2}}{2B}, \quad \rho_{\|} \equiv \frac{v_{\|}}{\omega_{L}}, \quad B^{*} \equiv B [1 + \rho_{\|} \hat{b} \cdot (\nabla \times \hat{b})], \quad \hat{b} \equiv \frac{B}{B}$$

$$v'_{\|} = \frac{v_{\|}}{v} (v + \Delta v_{L}) + \frac{v_{\perp}}{v} \Delta v_{T} \sin \Omega, \quad v'_{\perp} = \sqrt{(v_{\perp} + \Delta v_{\perp})^{2} + \Delta v_{\tau}^{2} - (v'_{\parallel})^{2}}$$

Hybrid model

Long-time simulation (100 ms scale)

► Multi-phase method: Speeds up the simulation by a factor 2-3.

Long-time simulation (100 ms scale)

► Multi-phase method: Speeds up the simulation by a factor 2-3.

► Major milestone reached: Simulated sequences of 3 ALEs.

Sensitivity study for ALEs - Numerical resolution - Dissipation

Procedure

Short-time initial-value simulations.

Time [ms]

► Selected ALE #2 at t = 129~130 ms.

Procedure

Short-time initial-value simulations.

Time [ms]

130

► Selected ALE #2 at t = 129~130 ms.

Simulate few millisecs. with different parameter settings:

(1) Check numerical sensitivity				(2) Reduce dissipation coeff.		
Resolution, noise	$N_{_{R}} \times N_{_{Z}} \times N_{_{\phi}}$	N _P	∆t / ns	$\mu_0^{-1}\eta = \nu = \chi$	$= 1.0 \times 10^{-6} v$	$r_{A0}R_{0}$
	384×352×96	6.9 M	1.0		0.5×10^{-6}	10
	800×720×96	27.8 M	0.5		0.3×10^{-6}	

Sensitivity study: 1. PIC noise effects (# particles)

Sensitivity study: 2. Spatial resolution

Sensitivity study: 3. Dissipation effect ($\eta = v = \chi$)

Sensitivity study: 3. Dissipation effect ($\eta = v = \chi$)

EP-induced magnetic islands

- Magnetic chaos
- Resistive decay

Before large event

After large event

ALE ramp

ALE ramp

ALE peak

20

ALE peak

21

After ALE: Multi-time-scale decay

ALE-induced islands: Resitivity dependence

Smaller resisitivity yields similar or larger islands!

Because: similar/larger ALE, slower decay

Somewhat irregular decay on millisec scale

Summary: Simulations show reconnection during ALEs

Tentative conclusion:

Phenomenon seems to be physical within realm of resistive MHD (not a numerical artifact).

Discussion: Open questions & relevance

<u>To be examined:</u>

- How can 50 kHz Alfvén waves reconnect *B* field?
- Analyze combined effect of chaotic B & δE×B on EPs, bulk (... & vice versa).
- Experimental check?

Relevance:

• May explain enhanced electron transport observed during ALEs in JT-60U exp.

Ishikawa et al, *Nucl. Fusion* **45** (2005) 1474.

 May also be relevant for space plasmas; e.g.
 "flux transfer events (FTE)" in magnetopause.

Uberoi, *J. Plasma Phys.* **62** (1999) 345. Prikryl et al. *Ann. Geophys* **20** (2002) 161.

Question: How can 50 kHz Alfvén waves reconnect B field?

Educated guesses for parity mixing mechanisms:

(a) Chaotic *B* field effect:

Interference of large-amp. MHD waves with multiple helicities *m / n*.

- → Mixed-parity low-frequency beats?
- → Drive 3D reconnection at many locations?

(b) Collective NL interaction with EPs:

Interactions with both oscillating $\delta E \times B$ and quasi-steady δB causes phase space to be "reconnected" around resonances.

→ EP phase space islands are imprinted onto *B* field via EP current?

