Magnetic Reconnection during Fast Ion Driven Alfvénic Activity

Presented by Andreas Bierwage

JT-60U experiments: Abrupt Large-amplitude Events (ALE)

- Magnetic fluct. amplitude
- δB_θ [a.u.]

- Mirnov coil signal at wall

- Shot E048424

- Time [ms]

ALE simulation (MEGA):

- Found magnetic islands after large event.

Why?
Collaborators:
Kouji Shinohara (QST),
Yasushi Todo (NIFS),
Nobuyuki Aiba (QST),
Masatoshi Yagi (QST)

HPC:
● Helios, JFRS-1 at IFERC-CSC in Rokkasho, JP
● ICE X of JAEA in Tokai, JP
● K Computer of the RIKEN AICS in Kobe, JP

Funding:
● JSPS Grant-in-Aid for Scientific Research (16K18341)
● MEXT “Priority Issue on Post-K computer” (Accel. Development of Innovative Clean Energy Systems)
1. Code & model
 Hybrid MHD-PIC

2. Sensitivity study for ALEs
 Numerical resolution, dissipation

3. EP-induced magnetic islands
 Magnetic chaos, resistive decay
Hybrid model

Bulk plasma: Single-fluid MHD

Long-wavelength Alfvén modes. Dissipation of small-scale struct.

Energetic particles: Gyrokinetic PIC

\[\parallel \text{streaming, } \perp \text{ drifts, gyroaverage, collisions, sources, wall losses.} \]

MEGA code

\[[\text{Y. Todo, NIFS}] \]

\[\frac{\partial \rho_b}{\partial t} = -\nabla \cdot (\rho_b \delta u_b), \quad \mu_0 J = \nabla \times B \]

\[\rho_b \frac{\partial u_b}{\partial t} = -\rho_b u_b \cdot \nabla u_b - \nabla p_b + (J - J_{\text{h,eff}}) \times B \]

\[- \left[\nabla \times \nabla \rho_b \nabla \times u_b \right] + \frac{4}{3} \nabla \left(\nabla \rho_b \nabla \cdot u_b \right) \]

\[\frac{\partial B}{\partial t} = -\nabla \times E, \quad E = -u_b \times B + \eta \delta J \]

\[\frac{\partial p_b}{\partial t} = -\nabla \cdot \left(\rho_b u_b - (\Gamma - 1) \left[p_b \nabla \cdot u_b + \eta (J - J_{\text{h,eff}}) \delta J \right] \right) \]

\[+ \nu \rho_b (\Gamma - 1) \left[|\nabla \times u_b|^2 + \frac{4}{3} |\nabla \cdot u_b|^2 \right] + \chi |\nabla^2 p_b|^2 \]

Gyro-avg.

\[J_{\text{h,eff}} \]

B, E

\[\frac{d R_{\text{gc}}}{dt} = \frac{v_B}{qB^*} \nabla B \times \dot{b} + \frac{v_{\parallel}}{B^*} (B + \rho_{\parallel} B \nabla \times \dot{b}) + \frac{v_{E^*}}{B^*} = U_{\text{gc}} \]

\[m v_{\parallel} \frac{dv_{\parallel}}{dt} = v_{\parallel}^* (qE - \mu \nabla B) \]

\[\frac{d\mu}{dt} = 0 + O(\beta \epsilon_\delta) \quad \text{with} \quad \epsilon_\delta \sim \frac{\rho_{\perp}}{L_B} \sim \frac{\omega}{\Omega_L} \ll 1 \]

\[\mu \equiv \frac{m v_{\perp}^2}{2 B^*}, \quad \rho_{\parallel} \equiv \frac{v_{\parallel}}{\omega_{\perp}}, \quad B^* \equiv B \left[1 + \rho_{\parallel} \hat{b} \cdot \left(\nabla \times \hat{b} \right) \right], \quad \hat{b} \equiv \frac{B}{B} \]

\[v_{\parallel} = \frac{v_l}{\sqrt{v + \Delta v_l}} + \frac{v_l}{\sqrt{\Delta v_T \sin \Omega}}, \quad v_{\parallel} = \sqrt{v l + \Delta v_l^2 + \Delta v_T^2 - v_{\parallel}^2} \]
Hybrid model

Bulk plasma: Single-fluid MHD

Long-wavelength Alfvén modes. Dissipation of small-scale structures.

Energetic particles: Gyrokinetic PIC

∥ streaming, ⊥ drifts, gyroaverage, collisions, sources, wall losses.

MEGA code [Y. Todo, NIFS]

(t): 4th-order Runge-Kutta, \(\Delta t_{\text{mhd}} \approx 1 \text{ ns} \)

(R, \(\phi \), Z): finite differences, non-slip b.c.

MEGACode

\[
\frac{\partial \rho_b}{\partial t} = - \nabla \cdot (\rho_b \delta u_b), \quad \mu_0 J = \nabla \times B
\]

\[
\frac{\partial u_b}{\partial t} = - \rho_b \nabla \cdot u_b - \nabla p_b + (J - J_{h,\text{eff}}) \times B
\]

\[
- \left[\nabla \times (\nu \rho_b \nabla \times u_b) + \frac{4}{3} \nabla (\nu \rho_b \nabla \cdot u_b) \right]
\]

\[
\frac{\partial B}{\partial t} = - \nabla \times E, \quad E = - u_b \times B + \eta \delta J
\]

\[
\frac{\partial p_b}{\partial t} = - \nabla \cdot (p_b u_b) - (\Gamma - 1) \left[\rho_b \nabla \cdot u_b + \eta (J - J_{h,\text{eff}}) \cdot \delta J \right]
\]

\[
+ \nu \rho_b (\Gamma - 1) \left[|\nabla \times u_b|^2 + \frac{4}{3} |\nabla \cdot u_b|^2 \right] + \chi \nabla^2 p_b
\]
Long-time simulation (100 ms scale)

▶ Multi-phase method: Speeds up the simulation by a factor 2-3.

EP motion + src.+coll.

ON continuously

OFF 4 ms

ON 1 ms

OFF 4 ms

ON 1 ms

MHD

Beam injection starts at time \(t = 0 \)

Fast ion tail forms
Long-time simulation (100 ms scale)

- **Multi-phase method:** *Speeds up the simulation by a factor 2-3.*
 - EP motion + src.+coll.:
 - ON continuously
 - OFF 4 ms, ON 1 ms, OFF 4 ms, ON 1 ms
 - MHD

- **Major milestone reached:** *Simulated sequences of 3 ALEs.*

Sensitivity study for ALEs

- Numerical resolution
- Dissipation
Procedure

► Selected ALE #2 at $t = 129\sim 130$ ms.

→ Use snapshot at $t = 129$ ms as new initial condition.

MEGA mult-phase simulation

Short-time initial-value simulations. Without sources and collisions.
Procedure

- **Selected ALE #2 at $t = 129$~130 ms.**
 → Use snapshot at $t = 129$ ms as new initial condition.

- **Simulate few millisecs. with different parameter settings:**

 (1) Check numerical sensitivity

 Resolution, noise

<table>
<thead>
<tr>
<th>$N_R \times N_Z \times N_{\phi}$</th>
<th>N_P</th>
<th>$\Delta t / \text{ns}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>384×352×96</td>
<td>6.9 M</td>
<td>1.0</td>
</tr>
<tr>
<td>800×720×96</td>
<td>27.8 M</td>
<td>0.5</td>
</tr>
</tbody>
</table>

 (2) Reduce dissipation coeff.

 $\mu_0^{-1} \eta = v = \chi = 1.0 \times 10^{-6} \nu A_0 R_0$

 0.5×10^{-6}

 0.3×10^{-6}
Sensitivity study: **1. PIC noise effects**

Noise floor

- **7M particles**
 - More particles per cell give lower noise level

- **28M particles**

Suspicion:

PIC noise aids ALE trigger (a little).
Sensitivity study: 2. Spatial resolution

Well reproduced.
Sensitivity study: 3. Dissipation effect ($\eta = \nu = \chi$)

Weaker dissipation ...
(a) reduces ALE threshold
(b) causes similar EP transport
Sensitivity study: 3. Dissipation effect ($\eta = \nu = \chi$)

Weaker dissipation ...
(a) reduces ALE threshold
(b) causes similar EP transport

Before ALE

Fast ion transport $\beta_{EP}(r)$ [%]

After ALE

Anticipate similar ALE period
EP-induced magnetic islands
- Magnetic chaos
- Resistive decay
Before large event

- **Mode amplitude evolution**
 - Magnetic fluct amplitude (a.u.) vs. Time (% ms)
 - n = 1, 2, 3
 - m = 2 EPM
 - m = 4, 5 TAE

Before ALE

- **Frequency (kHz)**
 - n = 1, m = 2 EPM
 - t = 386.689 (0.304 ms)
 - n = 2, m = 4,5 TAE
 - n = 3, m = 5,6 TAE

- **Magnetic field Poincaré plot**
 - No islands.
 - Only waves (40-50 kHz).

- Wiggly flux surfaces = shear Alfvén waves.
After large event

Mode amplitude evolution

Safety factor profile

Magnetic field Poincare plot

Questions:
(1) How did they form?
(2) How do they evolve?

Moderately large magnetic islands.
Islands appear within < 0.2 ms, during B chaos & avalanche.

Poincaré plots of $B = B_{\text{eq}} + \delta B$. Ignored $\delta E \times B$.

Apparent left-shift due to plotting left to right.
ALE ramp

Mode amplitude evolution

- Magnetic fluct. amplitude (a.u.)
- Time \(t \) [ms]

- **Note:** @ \(t \approx 129.5 \) ms system already returned to state of only weak linear instability.
 - Most part of ALE is nonlin. overshoot.

- Islands appear within < 0.2 ms, during \(B \) chaos & avalanche.

Reset fields. Randomize ptcls. along \(\phi \).

Islands appear within < 0.2 ms, during \(B \) chaos & avalanche.
ALE peak

Mode amplitude evolution

B chaos in entire core plasma. Island width w / a ~ 20%.
Local perturbation in plasma current density reaches 100%.

Toroidal current density.
After ALE: Multi-time-scale decay

Time scales ($\Delta r / a \sim 0.1$):

- $1 \sim 10 \mu s$
- $100 \mu s$
- $1 \sim$ few ms

Tearing-stable system returns to unperturbed state.

Alfvén continuum phase mixing
EP avalanche
Current diffusion

$\partial B / \partial t = - \nabla \times E$,

$E = - u_b \times B + \eta \delta J$

$\eta / \mu_0 = 10^{-6} v_{A0} R_0 \sim w^2 / \tau_\eta$

$v_{A0} / R_0 \sim 10^8 \text{s}^{-1}$, $R_0 / a \sim 3$

$w / a = 0.1 \rightarrow \tau_\eta \sim 1 \text{ ms}$

Major part of pert. decays faster ($\sim 0.2 \text{ ms}$) than resistive time ($\sim 1 \text{ ms}$).
Presumably: NL structs. vanish with avalanche.
ALE-induced islands: Resitivity dependence

$\eta = 10^{-6}$

0.5×10^{-6}

Smaller resistivity yields similar or larger islands!

Because: similar/larger ALE, slower decay

Snapshot 0.5 ms after ALE: n=1 similar, n=2,3 larger
Somewhat irregular decay on millisec scale

\[\eta = 10^{-6} \]

\[0.5 \times 10^{-6} \]

Besides resistive decay:
- nonlin. coupling
- EPs
- waves may still play a role.
Summary: Simulations show reconnection during ALEs

Results:
- Confirmed sim. results with higher resolution & lower noise.
- Lower dissipation reduces threshold for ALE onset but amplitude remains large.
- Island decay time: $\tau_{\text{resistive}} \sim 1 \text{ ms}$
- Island formation to be clarified: $\tau_{\text{island}} \sim 0.2 \text{ ms} < \tau_{\text{resistive}}$
- Reducing dissipation by 1/2 gives similar (or larger) islands.

Tentative conclusion:
- Phenomenon seems to be physical within realm of resistive MHD (not a numerical artifact).
Discussion: **Open questions & relevance**

To be examined:
- How can 50 kHz Alfvén waves reconnect B field?
- Analyze combined effect of chaotic B & $\delta E\times B$ on EPs, bulk (… & vice versa).
- Experimental check?

Relevance:
- May explain enhanced electron transport observed during ALEs in JT-60U exp.
- May also be relevant for space plasmas; e.g. “flux transfer events (FTE)” in magnetopause.
Question: **How can 50 kHz Alfvén waves reconnect B field?**

Educated guesses for parity mixing mechanisms:

(a) Chaotic B field effect:
Interference of large-amp. MHD waves with multiple helicities \(m / n \).
- Mixed-parity low-frequency beats?
- Drive 3D reconnection at many locations?
- Merging micro-islands?

(b) Collective NL interaction with EPs:
Interactions with both oscillating \(\delta E \times B \) and quasi-steady \(\delta B \) causes phase space to be “reconnected” around resonances.
- EP phase space islands are imprinted onto \(B \) field via EP current?

See also: Thursday, P2-22 Shinohara et al.