Fast-ion D_a spectroscopy diagnostics in KSTAR

J. W. Yoo^a, Junghee Kim^a, J. H. Lee^a, Y. U. Nam^a, S. G. Oh^b, J. S. Kang^a, M. W. Lee^a, J. S. Ko^a, W. -H. Ko^a, L. Jung^a and B. H. Park^a

^aNational Fusion Research Institute, Daejeon, Korea

^bAjou University

jwyoo@nfri.re.kr

Introductions

- In KSTAR FIDA diagnostic system has been developed and the commissioning has been performed since 2018 KSTAR experimental campaign.
- It consists of the grism, two tele-lens sets, blocking strip and EMCCD. The temporal, spectral and spatial resolutions of the spectrometer are 20 msec, 0.0215 nm and 4-10 cm respectively.

165.68

161.07

157.35

154.5

10

• FIDASIM calculations has been commissioning with KSTAR spectrometer data to precisely evaluate FIDA signal.

Experimental setup

FIDA spectrometer

Calibration of each line of sight

FIDA (fast ion D_{α}) system consists of two mid-plane *tangential* arrays. J-port cassette: Integrated Optics module shared with visible spectroscopy and filter scope Integrated FIDASIM modelling platform (handling the profile data + TRANSP outputs) is necessary.

Wavelength calibrations

Predictions of E-p space sensitivity (weight function)

Weight function depends on, Minimum energy $E = E_{\lambda}(1-p^2)$ and Gyro-angle weight $E = \frac{E_{\lambda}}{\left(\lambda_{||}p + \lambda_{\perp}\sqrt{1-p^2}\right)^2}$ [1] **Examples of weighting function for KSTAR** vertical a, angle between $b \perp 1$ and LOS at $b \parallel$, $b \perp 1$ plane 0.5 0.5 Fast ion distribution function calculated by NUBEAM V_IN -0.5 -0.5 a=0.065pi Geometric weighting convolutions 0^{4} 0.5 18602 at 13.65 s V_|| R, Z = 190 m, -0 mBEAM A, B, C (100, 70, 70 keV) 50 100 150 -0.5 -0.5Energy [keV] | w(E, p) dE dpa=0.2pi

50

Since KSTAR FIDA systems in mid-plane and tangential array ($a \sim 0.5$ pi) Convolution shows the narrower region of the E-p coverage.

Energy [keV]

100

150

Energy [keV]

100

150

2.2

2.3

2.1

R [m]

1.9

50

ID: #71

Modelling setup

FIDASIM [2] calculations

Sensitivity study with Z_{eff} and D_f

FIDA density = FIDA intensity/beam neutral density \propto Fast ion density ($\propto P_{ini}f(T_e)/n_e$) \propto Fast ion pressure FIDA density profile seems to be qualitatively and quantitatively matched with shape of fast ion pressure (TRANSP)

- Spectroscopic measurements in beam into gas and plasma discharges will be performed for the reference spectra.
- Additional FIDA array (FIDA02) will be introduced in 2019 campaign to span the detectable fast-ion phase-space.
- FIDASIM iteration is necessary with newly acquitted data.

Comparison with physical parameters

- To expand FIDA operational range of fast-ion phase-space, optical alignment is under discussion.
- To understand fast ion physics, various operation scenarios and relevant MHD instabilities will be investigated.

For the sensitivity study, effective Z, profile shape of Z_{eff}, fast ion diffusivity and current fraction are scanned. Especially large values of Z_{eff} enhances bremsstrahlung emissions signal to noise ratio is gone bad. Bremsstrahlung, one order larger than FIDA intensity ($\propto n_e^2$)

Acknowledgments

The authors would like to acknowledge the KSTAR team and appreciate Alvin Garcia for useful comments.

References

Summary

[1] Luo Y, Heidbrink W W, Burrell K H, Kaplan D H and Gohil P 2007 *Rev. Sci. Instrum.* **78** 033505 [2] W. Heidbrink, D Liu, Y. Luo, E. Ruskov, and B. Geiger.Commun. Comput. Phys., 10(10):716–741, 2011. [3] O. Meneghini et al., Nucl. Fusion 55, 083008 (2015). [4] W W Heidbrink et al., PPCF 49 1457-1475 (2007) [5] Luo, PhD thesis (2007)