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Frequency chirping instabilities are observed for the 

first time driven by runaway electrons in tokamak 

GAE in NSTX [1] [2] 

[3] 

• Energetic particles can drive 

instabilities through wave-particle 

resonances 

 

• Frequency chirping instabilities are 

often observed driven by fast ions 

in tokamaks 

 

 

[1] Fredrickson et al. PoP 2006 

[2] Pinches et al. PPCF 2004 

[3] Berk et al. NF 2006 

TAE in MAST 

TAE in JET 
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Frequency chirping instabilities are observed for the 

first time driven by runaway electrons in tokamak 

GAE in NSTX [1] [2] 

[3] 

• Energetic particles can drive 

instabilities through wave-particle 

resonances 

 

• Frequency chirping instabilities are 

often observed driven by fast ions 

in tokamaks 

 

• This talk: discovery of rapid 

frequency chirping driven by 

runaway electrons (REs) in DIII-D 
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[3] Berk et al. NF 2006 
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Frequency chirping instabilities are observed for the 

first time driven by runaway electrons in tokamak 

GAE in NSTX [1] [2] 

[3] 

• Energetic particles can drive 

instabilities through wave-particle 

resonances 

 

• Frequency chirping instabilities are 

often observed driven by fast ions 

in tokamaks 

 

• This talk: discovery of rapid 

frequency chirping driven by 

runaway electrons (REs) in DIII-D 

 

• MHz instabilities increase RE loss 

 

• While poorer confinement is 

undesirable for fast ions, it can be 

beneficial for RE control and 

mitigation in tokamaks 

 [1] Fredrickson et al. PoP 2006 

[2] Pinches et al. PPCF 2004 

[3] Berk et al. NF 2006 

TAE in MAST 

TAE in JET 
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Outline 

• Experiment and diagnostics 

• Frequency chirping 

• RE distribution function 

• Operating space 

• Possible driving mechanism and candidate instability 

• RE-driven instabilities at higher collisionality 
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Outline 

• Experiment and diagnostics 

• Frequency chirping 

• RE distribution function 

• Operating space 

• Possible driving mechanism and candidate instability 

• RE-driven instabilities at higher collisionality 
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RE-driven instabilities are accessed in low density post-

disruption runaway plasma under decelerating voltage 

• Post-disruption RE beam is 

deliberately produced in DIII-D 

after injection of small Ar pellet 

 

A A 
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RE-driven instabilities are accessed in low density post-

disruption runaway plasma under decelerating voltage 

• Post-disruption RE beam is 

deliberately produced in DIII-D 

after injection of small Ar pellet 

 

• Argon impurity is purged from RE 

beam by D2 massive gas injection 

 

• This 1) drastically reduces thermal 

electron density by two orders of 

magnitude and 2) provides large 

variability of applied loop voltage 

A 

B 

A B 
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RE-driven instabilities are accessed in low density post-

disruption runaway plasma under decelerating voltage 

• Post-disruption RE beam is 

deliberately produced in DIII-D 

after injection of small Ar pellet 

 

• Argon impurity is purged from RE 

beam by D2 massive gas injection 

 

• This 1) drastically reduces thermal 

electron density by two orders of 

magnitude and 2) provides large 

variability of applied loop voltage 

 

• RE-driven instabilities are observed 

when large decelerating loop 

voltage is applied to initially stable 

RE beam (→ next slide) 

A 

B 

A B 
Initial RE equilibrium 
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RE loss increases under decelerating loop voltage 

• Large decelerating voltage with 

magnitude comparable with 

breakdown voltage is applied to 

RE beam 
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RE loss increases under decelerating loop voltage 

• Large decelerating voltage with 

magnitude comparable with 

breakdown voltage is applied to 

RE beam 

 

• This causes large fluctuations of 

wall and core hard X-ray signals 

(from lost and confined REs) 
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RE loss increases under decelerating loop voltage 

• Large decelerating voltage with 

magnitude comparable with 

breakdown voltage is applied to 

RE beam 

 

• This causes large fluctuations of 

wall and core hard X-ray signals 

(from lost and confined REs) 

 

• Also, spikes of ECE are detected 
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RE loss increases under decelerating loop voltage 

• Large decelerating voltage with 

magnitude comparable with 

breakdown voltage is applied to 

RE beam 

 

• This causes large fluctuations of 

wall and core hard X-ray signals 

(from lost and confined REs) 

 

• Also, spikes of ECE are detected 

 

• These are clear signs of RE-driven 

instabilities 
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Outline 

• Experiment and diagnostics 

• Frequency chirping 

• RE distribution function 

• Operating space 

• Possible driving mechanism and candidate instability 

• RE-driven instabilities at higher collisionality 
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RE-driven plasma waves are detected via  

high-frequency measurements of magnetic signals 

• Energetic REs can lead to excitation 

of plasma waves (similar to fast ions)  

• High-frequency fluctuations of 

toroidal magnetic field are detected 

on DIII-D by RF-diagnostic [1,2] 

• RF-diagnostic provides 

measurements up to 200 MHz 

[1] Watson and Heidbrink RSI 2003 

[2] Thome et al. RSI 2018 



A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019 16 

Bremsstrahlung radiation provides information  

on energy and distribution of REs 

• When electron changes its 

trajectory it emits photons 

 

• MeV electrons → MeV 𝜸 rays 

 
• 𝜸 rays (HXRs) are forward beamed 

based on RE energy 
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Bremsstrahlung radiation provides information  

on energy and distribution of REs 

• When electron changes its 

trajectory it emits photons 

 

• MeV electrons → MeV 𝜸 rays 

 
• 𝜸 rays (HXRs) are forward beamed 

based on RE energy 

 
• 𝒇𝒆(𝑬∥, 𝑬⊥) produces unique 

bremsstrahlung spectrum 
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Bremsstrahlung radiation provides information  

on energy and distribution of REs 

• When electron changes its 

trajectory it emits photons 

 

• MeV electrons → MeV 𝜸 rays 

 
• 𝜸 rays (HXRs) are forward beamed 

based on RE energy 

 
• 𝒇𝒆(𝑬∥, 𝑬⊥) produces unique 

bremsstrahlung spectrum 

 

• DIII-D Gamma Ray Imager (GRI) 

provides 2D view of RE 

bremsstrahlung emission [1−4] 

 

[1] Pace et al. RSI 2016             [2] Cooper et al. RSI 2016 

[3] Paz-Soldan et al. PRL 2017     [4] Paz-Soldan et al. PoP 2018 
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Bremsstrahlung radiation provides information  

on energy and distribution of REs 

• When electron changes its 

trajectory it emits photons 

 

• MeV electrons → MeV 𝜸 rays 

 
• 𝜸 rays (HXRs) are forward beamed 

based on RE energy 

 
• 𝒇𝒆(𝑬∥, 𝑬⊥) produces unique 

bremsstrahlung spectrum 

 

• DIII-D Gamma Ray Imager (GRI) 

provides 2D view of RE 

bremsstrahlung emission [1−4] 

 

[1] Pace et al. RSI 2016             [2] Cooper et al. RSI 2016 

[3] Paz-Soldan et al. PRL 2017     [4] Paz-Soldan et al. PoP 2018 

See also poster on RE orbit tomography by 

 Luke Stagner on Thursday 
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Outline 

• Experiment and diagnostics 

• Frequency chirping 

• RE distribution function 

• Operating space 

• Possible driving mechanism and candidate instability 

• RE-driven instabilities at higher collisionality 
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RE loss increases under decelerating loop voltage 

• Large decelerating voltage with 

magnitude comparable with 

breakdown voltage is applied to 

RE beam 

 

• This causes large fluctuations of 

wall and core hard X-ray signals 

(from lost and confined REs) 

 

• Also, spikes of ECE are detected 

 

• These are clear signs of RE-driven 

instabilities 

 

• Now take a closer look at these 

instabilities 
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RE loss correlates with magnetic fluctuations at 1−7 MHz 

• Fluctuations of toroidal magnetic field are seen in spectrograms 
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RE loss correlates with magnetic fluctuations at 1−7 MHz 

• Fluctuations of toroidal magnetic field are seen in spectrograms 

• They have clear chirping nature 
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RE loss correlates with magnetic fluctuations at 1−7 MHz 

• Fluctuations of toroidal magnetic field are seen in spectrograms 

• They have clear chirping nature and correlate with RE loss signal 
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High frequency range magnetic fluctuations (30−80 MHz) 

show no correlation with RE loss 

• Two frequency bands of magnetic fluctuations: 1−10 MHz and 30−80 MHz 

• High frequency fluctuations do not drive observable RE loss 

4
%
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Frequency of instabilities has Alfvénic dependence on Bφ 

• RE beam moves to HFS and senses increasing 𝑩𝝋 ∝ 𝟏/𝑹  (ne=constant) 
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Frequency of instabilities has Alfvénic dependence on Bφ 

• RE beam moves to HFS and senses increasing 𝑩𝝋 ∝ 𝟏/𝑹  (ne=constant) 

• 𝒇(𝑩𝝋) dependence is Alfvénic: 𝒇𝑨 ∝ 𝒗𝑨 ∝ 𝑩𝝋 
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Frequency of instabilities has Alfvénic dependence on Bφ 

• RE beam moves to HFS and senses increasing 𝑩𝝋 ∝ 𝟏/𝑹  (ne=constant) 

• 𝒇(𝑩𝝋) dependence is Alfvénic: 𝒇𝑨 ∝ 𝒗𝑨 ∝ 𝑩𝝋 for both frequency bands 
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Outline 

• Experiment and diagnostics 

• Frequency chirping 

• RE distribution function 

• Operating space 

• Possible driving mechanism and candidate instability 

• RE-driven instabilities at higher collisionality 
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Modification of RE energy distribution function is 

measured during frequency chirping  

• RE distribution function measured 

before chirping observed has a 

bump 
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Modification of RE energy distribution function is 

measured during frequency chirping  

• RE distribution function measured 

before chirping observed has a 

bump 

 

• Bump is a potential source of free 

energy to drive instabilities  

 

• Formation of the bump can be 

explained by interplay between 

RE acceleration by electric field 

and collisional damping on D2 

bound electrons [1] 

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion 
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Modification of RE energy distribution function is 

measured during frequency chirping  

• RE distribution function measured 

before chirping observed has a 

bump 

 

• Bump is a potential source of free 

energy to drive instabilities  

 

• Formation of the bump can be 

explained by interplay between 

RE acceleration by electric field 

and collisional damping on D2 

bound electrons [1] 
 

• Relaxation of RE f(E) during 

chirping events is directly 

measured 

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion 

time 
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Modification of RE energy distribution function is 

measured during frequency chirping  

• RE distribution function measured 

before chirping observed has a 

bump 

 

• Bump is a potential source of free 

energy to drive instabilities  

 

• Formation of the bump can be 

explained by interplay between 

RE acceleration by electric field 

and collisional damping on D2 

bound electrons [1] 
 

• Relaxation of RE f(E) during 

chirping events is directly 

measured 

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion 

time 

time 
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Modification of RE energy distribution function is 

measured during frequency chirping  

• RE distribution function measured 

before chirping observed has a 

bump 

 

• Bump is a potential source of free 

energy to drive instabilities  

 

• Formation of the bump can be 

explained by interplay between 

RE acceleration by electric field 

and collisional damping on D2 

bound electrons [1] 
 

• Relaxation of RE f(E) during 

chirping events is directly 

measured 

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion 

time 

time 
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Modification of RE energy distribution function is 

measured during frequency chirping  

• RE distribution function measured 

before chirping observed has a 

bump 

 

• Bump is a potential source of free 

energy to drive instabilities  

 

• Formation of the bump can be 

explained by interplay between 

RE acceleration by electric field 

and collisional damping on D2 

bound electrons [1] 
 

• Relaxation of RE f(E) during 

chirping events is directly 

measured 

 

• This supports interactions between 

REs and instabilities 

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion 

time 

time 
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Outline 

• Experiment and diagnostics 

• Frequency chirping 

• RE distribution function 

• Operating space 

• Possible driving mechanism and candidate instability 

• RE-driven instabilities at higher collisionality 
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Chirping in low frequency range causes strongest RE loss 

• Instabilities are observed in two 

distinct frequency ranges: 0.1−10 

MHz and 30−80 MHz 

 

• They are triggered at low plasma 

density and decelerating voltage 

 
 
 

 

no  

instabilities 
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Chirping in low frequency range causes strongest RE loss 

• Instabilities are observed in two 

distinct frequency ranges: 0.1−10 

MHz and 30−80 MHz 

 

• They are triggered at low plasma 

density and decelerating voltage 

 

• Low freq. chirping (1−3 MHz) 

causes the strongest magnetic 

fluctuations (𝚫𝑩 𝝓) 

 
 

 

no  

instabilities 
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Chirping in low frequency range causes strongest RE loss 

• Instabilities are observed in two 

distinct frequency ranges: 0.1−10 

MHz and 30−80 MHz 

 

• They are triggered at low plasma 

density and decelerating voltage 

 

• Low freq. chirping (1−3 MHz) 

causes the strongest magnetic 

fluctuations (𝚫𝑩 𝝓) 

 

• Low freq. chirping (1−3 MHz) 

causes the strongest change of RE 

loss signal (∆HXR) 
 

• Δf changes by 0.3−2.4 MHz on 0.1 

ms (local width) and 0.3-1.8 ms 

(full width) time scales 
 
 

 

no  

instabilities 
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Outline 

• Experiment and diagnostics 

• Frequency chirping 

• RE distribution function 

• Operating space 

• Possible driving mechanism and candidate instability 

• RE-driven instabilities at higher collisionality 
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Possible mechanism of instabilities: REs drive Alfvénic 

waves, which scatter REs and increase RE loss 

• Decelerating loop voltage 

presumably leads to strong non-

monotonic feature (bump) at RE 

distribution function 

 

• This excites Alfvénic waves 

 

• Alfvénic waves interact with REs, 

scatter them and increase RE loss 

 

• Fast relaxation of RE distribution 

function can explain frequency 

chirping consistent with the hole-

clump model [1] 

 

• Fast pitch-angle scattering of REs 

can cause the observed spikes of 

ECE 

#175783 

[1] Berk, Breizman, Ye. PRL 1992 
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Compressional Alfvén eigenmodes are most likely 

candidates for observed instabilities 

[1] • Fundamental freq. of observed 

instabilities lies between 1−10 MHz 

 

[1] Heidbrink PoP 2002 
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Compressional Alfvén eigenmodes are most likely 

candidates for observed instabilities 

[1] • Fundamental freq. of observed 

instabilities lies between 1−10 MHz 

 

• For given plasma parameters: 
− 𝒇𝒄𝒊 ≈ 𝟏𝟓 MHz 
− 𝒇𝑨 ≈ 𝟏. 𝟓 MHz 

 

[1] Heidbrink PoP 2002 
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Compressional Alfvén eigenmodes are most likely 

candidates for observed instabilities 

[1] • Fundamental freq. of observed 

instabilities lies between 1−10 MHz 

 

• For given plasma parameters: 
− 𝒇𝒄𝒊 ≈ 𝟏𝟓 MHz 
− 𝒇𝑨 ≈ 𝟏. 𝟓 MHz 

 

• Compressional Alfvén 

eigenmodes (CAEs) are the most 

likely candidates for kinetic 

instabilities in the observed 

frequency region 

 

[1] Heidbrink PoP 2002 
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Compressional Alfvén eigenmodes are most likely 

candidates for observed instabilities 

[1] • Fundamental freq. of observed 

instabilities lies between 1−10 MHz 

 

• For given plasma parameters: 
− 𝒇𝒄𝒊 ≈ 𝟏𝟓 MHz 
− 𝒇𝑨 ≈ 𝟏. 𝟓 MHz 

 

• Compressional Alfvén 

eigenmodes (CAEs) are the most 

likely candidates for kinetic 

instabilities in the observed 

frequency region 

 

• Separate loops will be installed to 

measure toroidal numbers and 

polarization 

[1] Heidbrink PoP 2002 

See poster by Genevieve Degrandchamp 

on Thursday for details 
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Cherenkov resonance is a possible driving mechanism 

• Anomalous Doppler and Cherenkov 

resonances are possible excitation 

mechanisms 

 

 

 

 

 

 

𝜔 = 𝑘∥𝑉∥ 

𝜔 = 𝑘∥𝑉∥ −
𝜔𝑐𝑒

𝛾
 

Satisfied at large k|| 
(k|| = 50−300 m−1) 

Satisfied at small k|| 
(k|| = 0.1−2 m−1) 



A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019 47 

Cherenkov resonance is a possible driving mechanism 

• Anomalous Doppler and Cherenkov 

resonances are possible excitation 

mechanisms 

 

 

 

 

 

• Assume cold plasma dispersion 

relation at small k|| ≈ k < 5 m−1 

 

 

 

 

𝜔 = 𝑘∥𝑉∥ 

𝜔 = 𝑘∥𝑉∥ −
𝜔𝑐𝑒

𝛾
 

Satisfied at large k|| 
(k|| = 50−300 m−1) 

Satisfied at small k|| 
(k|| = 0.1−2 m−1) 

𝜔 = 𝑘𝑉𝐴 1 + 𝑘∥
2𝑐2/𝜔𝑝𝑖

2   
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Cherenkov resonance is a possible driving mechanism 

• Anomalous Doppler and Cherenkov 

resonances are possible excitation 

mechanisms 

 

 

 

 

 

• Assume cold plasma dispersion 

relation at small k|| ≈ k < 5 m−1 

 

 

 

• Cherenkov resonance is satisfied for 

experimental conditions 

 

𝜔 = 𝑘∥𝑉∥ 

𝜔 = 𝑘∥𝑉∥ −
𝜔𝑐𝑒

𝛾
 

Cherenkov resonances at different k|| 
 

Satisfied at large k|| 
(k|| = 50−300 m−1) 

Satisfied at small k|| 
(k|| = 0.1−2 m−1) 

𝜔 = 𝑘𝑉𝐴 1 + 𝑘∥
2𝑐2/𝜔𝑝𝑖

2   
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Resonant RE orbits can be used to locate the RE bump 

Example of n/m=1/3 resonant mode 
Assumed: pitch-angle = −1 (WRT to current) 

frequency = 3 MHz 

 

• Plasma equilibrium and RE orbits are 

calculated for the early stage of 

chirping instabilities 

 

• Analysis of toroidal (𝝎𝝓) and 

poloidal (𝝎𝜽) transit frequencies 

provides wave-particle resonances: 

 

 

 

 

Ω𝑛𝑚 = 𝑛𝜔𝜑 −𝑚𝜔𝜃 − 𝜔 = 0 
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Resonant RE orbits can be used to locate the RE bump 

Example of resonant modes  

for n = 0…4 and m = 0…10 
Assumed: pitch-angle = −1 (WRT to current) 

frequency = 3 MHz 

 

• Plasma equilibrium and RE orbits are 

calculated for the early stage of 

chirping instabilities 

 

• Analysis of toroidal (𝝎𝝓) and 

poloidal (𝝎𝜽) transit frequencies 

provides wave-particle resonances: 

 

 

 

• Calculations of RE loss on resonant 

orbits can be used for bump 

localization (modelling input is 

welcome!) 

 

Ω𝑛𝑚 = 𝑛𝜔𝜑 −𝑚𝜔𝜃 − 𝜔 = 0 
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Outline 

• Experiment and diagnostics 

• Frequency chirping 

• RE distribution function 

• Operating space 

• Possible driving mechanism and candidate instability 

• RE-driven instabilities at higher collisionality 
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RE-driven MHz instabilities are also observed at high 

plasma collisionality 

• Chirping instabilities are accessed 

during the RE plateau at very low 

plasma density 

 

Focus so far: RE plateau 
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RE-driven MHz instabilities are also observed at high 

plasma collisionality 

• Chirping instabilities are accessed 

during the RE plateau at very low 

plasma density 

 

• RE-driven instabilities are also 

detected right after impurity 

injection – during the current 

quench, when plasma is dense 

− Most prominent after massive 

gas injection 

 

Current quench 
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RE-driven MHz instabilities are also observed at high 

plasma collisionality 

• Chirping instabilities are accessed 

during the RE plateau at very low 

plasma density 

 

• RE-driven instabilities are also 

detected right after impurity 

injection – during the current 

quench, when plasma is dense 

− Most prominent after massive 

gas injection 

 

• These instabilities can be 

responsible for failure of RE beam 

formation 
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RE-driven MHz instabilities are also observed at high 

plasma collisionality 

• Chirping instabilities are accessed 

during the RE plateau at very low 

plasma density 

 

• RE-driven instabilities are also 

detected right after impurity 

injection – during the current 

quench, when plasma is dense 

− Most prominent after massive 

gas injection 

 

• These instabilities can be 

responsible for failure of RE beam 

formation 

 

• Great interest for RE control in 

tokamaks! 

#177028 
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RE-driven instabilities observed during formation of post-

disruption RE beam sometimes presumably kill it [1] 

• Disruptions without formation of RE 

beam show clear extended 

fluctuations of magnetic signals 

during the current quench 

 

• RE loss correlates with MHz magnetic 

fluctuations in the frequency range of 

0.1−3 MHz 

 

[1] See much more detail in Lvovskiy et al. PPCF 2018 
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RE-driven instabilities observed during formation of post-

disruption RE beam sometimes presumably kill it [1] 

• Disruptions without formation of RE 

beam show clear extended 

fluctuations of magnetic signals 

during the current quench 

 

• RE loss correlates with MHz magnetic 

fluctuations in the frequency range of 

0.1−3 MHz 

 

• These magnetic fluctuations appear 

when RE energy ERE exceeds 2.5–3 

MeV 

 

 

[1] See much more detail in Lvovskiy et al. PPCF 2018 
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RE-driven instabilities observed during formation of post-

disruption RE beam sometimes presumably kill it [1] 

• Disruptions without formation of RE 

beam show clear extended 

fluctuations of magnetic signals 

during the current quench 

 

• RE loss correlates with MHz magnetic 

fluctuations in the frequency range of 

0.1−3 MHz 

 

• These magnetic fluctuations appear 

when RE energy ERE exceeds 2.5–3 

MeV 

 

• Varying pre-disruption Ip and 

amount of injected Ar we can switch 

between cases w/ and w/o RE beam 

 
[1] See much more detail in Lvovskiy et al. PPCF 2018 
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CAEs can be excited by REs with bump-on-tail f(E) via 

Cherenkov resonance [1] 

• Collisional and pitch-angle 

scattering of REs by argon nuclei 

can lead to formation of RE 

distribution function with bump-on-

tail [2,3] 

 

[1] Chang Liu et al. In preparation 

[2] Hesslow et al. PRL 2017 

[3] Chang Liu et al. PRL 2018 
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CAEs can be excited by REs with bump-on-tail f(E) via 

Cherenkov resonance [1] 

• Collisional and pitch-angle 

scattering of REs by argon nuclei 

can lead to formation of RE 

distribution function with bump-on-

tail [2,3] 

• Quasilinear simulations show 

excitation of CAEs via Cherenkov 

resonance 

 

[1] Chang Liu et al. In preparation 

[2] Hesslow et al. PRL 2017 

[3] Chang Liu et al. PRL 2018 
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CAEs can be excited by REs with bump-on-tail f(E) via 

Cherenkov resonance [1] 

• Collisional and pitch-angle 

scattering of REs by argon nuclei 

can lead to formation of RE 

distribution function with bump-on-

tail [2,3] 

• Quasilinear simulations show 

excitation of CAEs via Cherenkov 

resonance 

• Multiple modes can lead to 

stochastic motion of REs towards the 

wall 

• This increases RE radial transport 

 

[1] Chang Liu et al. In preparation 

[2] Hesslow et al. PRL 2017 

[3] Chang Liu et al. PRL 2018 
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RE-driven frequency chirping instabilities are observed 

for the first time in a tokamak 

• Instabilities are accessed in low density RE plateau under applied 

decelerating loop voltage 

• Frequency chirps by 0.3−2.4 MHz on timescale of 1 ms 

• There are two frequency regions: 1−10 MHz and 30−80 MHz 

− Low-frequency instabilities correlate with increased RE loss 

• Modification of RE energy distribution function is measured during 

chirping in low-frequency region consistent with hole-clump model 

• Candidate modes are CAEs driven by non-monotonic RE distribution 

function via Cherenkov resonance 

• Similar frequency instabilities correlated with intermittent RE loss are 

also observed at high plasma collisionality – during current quench 

– They are presumably responsible for non-sustainable RE beam 

– Modelling shows excitation of CAEs and increased RE radial transport 
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(Highlight slide) Rapid frequency chirping instabilities driven by 

runaway electrons are observed for the first time in a tokamak 

• Instabilities are accessed in low 

density post-disruption runaway 

plasma under applied decelerating 

voltage in DIII-D 

• Frequency chirps by 0.3−2.4 MHz 

on timescale of 1 ms 

• There are two distinct frequency 

regions: 1−10 MHz and 30−80 MHz 

− Low-frequency instabilities 

correlate with intermittent RE loss 

• Modification of RE energy 

distribution function is measured 

during chirping in low-frequency 

region consistent with hole-clump 

model 

Magnetic spectrogram of frequency chirping 
instabilities driven by runaway electrons in DIII-D 

Lvovskiy et al. Observation of rapid frequency chirping 

instabilities driven by runaway electrons in a tokamak. 

Submitted to Nucl. Fusion 



A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019 64 

BONUS SLIDES 
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Approximate phase space sensitivity of RE diagnostics 

Paz-Soldan et al. PoP 2018 
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Backup: RE spectrum is reconstructed from HXR 

spectrum using onion-peel method 

• Onion peel method from high 

energy down can be used to go 

from HXR to electron spectrum 

− Zero pitch angle and spatial 

homogeneity are assumed 

HXR spectrum 

RE spectrum 

HXR and RE spectra in the experiment 
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Backup: DIII-D gamma ray imager (GRI) provides  

2D view of RE bremsstrahlung emission 

• GRI is a pinhole camera 

• Its array consists of gamma scintillator 

detectors (up to 123 places) 

• Body and collimator block are made of 

lead ( ≈ 190 kg) 

pinhole 

array of 
BGO 
detectors 

sightlines 

lead collimator block 

for scale 

[Pace et al. RSI 2016] 

 

for scale 

DIII-D toroidal cross-section 
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Backup: Bremsstrahlung spectra can be found  

using pulse height analysis. Example: QRE shot 

• Time traces are comprised of pulses 

from distinct gamma particles 

• Gamma particles are analyzed via 

pulse height analysis (PHA) 

• Bremsstrahlung spectrum hardens in 

the course of time 

pulse 

height 

pulse 
height 

more high- 

energy 

gammas 

Pulses over time windows 

Histogram of pulse heights 

[Cooper et al. RSI 2016] 

10 20 30 40 

T1 
T2 T3 T4 

noise 
level 

density 

HXR 
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Backup: Measurements during the RE plateau regime  

are challenging – upgrade with fast gamma detectors 

• Gamma flux due to 

bremsstrahlung emission is 
higher by 103−104 in RE 

plateau regime compared to 

QRE 

• BGO detectors are usually 

saturated after the disruption 

• New LYSO+MPPC detectors 

are capable to measure 

during the post-disruption 

stage 
 

 

Collaboration with  
U. Milano-Bicocca 

time [μs] 

v
o

lt
a

g
e

 [
m

V
] 

Response of gamma detectors 

to a single gamma pulse 

100 ns pulse! 
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Backup: Frequency dependence on ne is stronger than 

Alfvénic 

• Frequency decreases as 𝒏𝒆
−𝟏 while typical Alfvénic dependence is 𝒏𝒆

−𝟏/𝟐
  

• Possibly explained by plasma non-uniformity during the argon purge 
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Backup: More energetic RE distribution leads to no RE 

beam 

• Cases without RE beam correlate 

with more energetic RE distribution 

 

• Increased argon quantity reduces 

the number of high-energy REs and 

correlates with successful RE beam 

formation 

 

• Integrated power of MHz frequency 

magnetic signals increases with 

increase of max ERE  

 

• Increased pre-disruption plasma 

current increases the maximum 

energy of REs 
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Backup: Possible mechanism of suppression of RE 

beam formation with two actuators 


