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Frequency chirping instabilities are observed for the

first time driven by runaway electrons in tokamak
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Frequency chirping instabilities are observed for the

first time driven by runaway electrons in tokamak
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Energetic particles can drive

instabilities through wave-particle

resonances

Frequency chirping instabilities are
often observed driven by fast ions
in fokamaks

This talk: discovery of rapid
frequency chirping driven by
runaway electrons (REs) in DIII-D

[1] Fredrickson et al. PoP 2006
[2] Pinches et al. PPCF 2004
[3] Berk et al. NF 2006
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Frequency chirping instabilities are observed for the

first time driven by runaway electrons in tokamak
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[2]

Energetic particles can drive
instabilities through wave-particle
resonances

Frequency chirping instabilities are
often observed driven by fast ions
in fokamaks

This talk: discovery of rapid
frequency chirping driven by
runaway electrons (REs) in DIII-D

MHz instabilities increase RE loss

While poorer confinement is
vundesirable for fast ions, it can be
beneficial for RE control and

mitigation in tokamaks
[1] Fredrickson et al. PoP 2006
[2] Pinches et al. PPCF 2004
[3] Berk et al. NF 2006



Experiment and diagnostics

Frequency chirping

RE distribution function

Operating space

Possible driving mechanism and candidate instability

RE-driven instabilities at higher collisionality
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« Experiment and diagnostics

* Frequency chirping

« RE distribution function

« Operating space

» Possible driving mechanism and candidate instability

« RE-driven instabilities at higher collisionality
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RE-driven instabilities are accessed in low density post-

disruption runaway plasma under decelerating voltage

 #175768

| 7y | (A) Post-disruption RE beam is
RIE f : deliberately produced in DIlI-D
pla e“‘l’ | after injection of small Ar pellet

Ohmic phase

Arll line

Dil-D
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RE-driven instabilities are accessed in low density post-

disruption runaway plasma under decelerating voltage

| 0y (A) Post-disruption RE beam is

1 [#1757¢8 quteq'u - deliberately produced in DIII-D
0.5 N L p/ 1, [MA] ; after injection of small Ar pellet
s | | | Argon impurity is purged frqm R.E
3! : beam by D, massive gas injection
0 ____________ — —
6! Ar D, |« This 1) drastically reduces thermal
3! pellet P”'Ln > [10"m2] electron density by two orders of
0 ——z_"_"_":i_ o - magnitude and 2) provides large
J’L} D line variability of applied loop voltage
Arll line p
0 3
t[s]
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RE-driven instabilities are accessed in low density post-

disruption runaway plasma under decelerating voltage

Initial RE eqU|I|br|um
(A) Post-disruption RE beam is

®®

1 [#1757¢8 RIE t | ’ - deliberately produced in DIII-D
0.5 | L p:'/em; [MA] ; after injection of small Ar pellet
o = Ohmic phase\——*—F——— ~__
6 | | | Argon impurity is purged f.ro.m R.E
3 ] beam by D, massive gas injection
0 ____________ —
6! Ar D, |« This 1) drastically reduces thermal
3! pellet Purl B (10"%m-2] 1 electron density by two orders of
0 -—z_"_'_":'_'_'_/__— . - magnitude and 2) provides large
J’L} (e variability of applied loop voltage
Arll line B
. . . -| « RE-driven instabilities are observed
0 1 s 2 3 when large decelerating loop

voltage is applied to initially stable
RE beam (— next slide)

Dil-D
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RE loss increases under decelerating loop voltage

5 1,[100 KA]— 3  Large decelerating voltage with
oSN~ S magnitude comparable with
5 : breakdown voltage is applied to
#175776
166 1.8 1.7 172 RE beam
t[s]
Dili-D
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RE loss increases under decelerating loop voltage

5/ 1,[100 KA]— 3 » Large decelerating voltage with
orN—--————">————— S 2 magnitude comparable with
5 : breakdown voltage is applied to
#7576 ; RE beam
1 wall

» This causes large fluctuations of
0.4 wall and core hard X-ray signals
HXR - RE |
one [q vl (from lost and confined REs)

T core
0.85: . :
HXR - RE confined [a.u.] ™

166 168 1.7 172
t[s]

Dil-D
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RE loss increases under decelerating loop voltage

0.85

1,[100 KA]—

#175776

HXR - RE losses [a.u.]

W
7 HXR - RE confined [a.u.] ™ 7

ECE T, 4 [keV]

4 | |
.66 168 17 172
t[s]
Dilnn-D
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» Large decelerating voltage with
magnitude comparable with
breakdown voltage is applied to
RE beam

» This causes large fluctuations of
wall and core hard X-ray signals
(from lost and confined REs)

» Also, spikes of ECE are detected
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RE loss increases under decelerating loop voltage

1,[100 KA]—

#175776

HXR - RE losses [a.u.]

| "‘“‘//M
0.85 i f
HXR - RE confined [a.u.] ™
8 L | I | ]
ECE T g [keV]

166 1.68 1.7 1.72
t [s]
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Large decelerating voltage with
magnitude comparable with
breakdown voltage is applied to
RE beam

This causes large fluctuations of
wall and core hard X-ray signals
(from lost and confined REs)

Also, spikes of ECE are detected

These are clear signs of RE-driven
instabilities

A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019



« Experiment and diagnostics

* Frequency chirping

« RE distribution function

« Operating space

» Possible driving mechanism and candidate instability

« RE-driven instabilities at higher collisionality

Dil-D
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RE-driven plasma waves are detected via

high-frequency measurements of magnetic signals

. e RF-diagnostic: =0 s
 Energetic REs can lead to excitation ; B [
of plasma waves (similar to fast ions) Magnehc Loopi "

. High-frequency fluctuations of
toroidal magnetic field are detected |
on DIII-D by RF-diagnostic [1,2] /

Ul &
- RF-diagnostic provides JE .
measurements up to 200 MHz :

i 25

[1] Watson and Heidbrink RSI 2003

DD 2] Thome et al. RS 2018
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Bremsstrahlung radiation provides information

on energy and distribution of REs

 When electron changes its

—e trajectory it emits photons
@
Eo  MeV electrons — MeV y rays
« y rays (HXRs) are forward beamed
based on RE energy
DiIll-D
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Bremsstrahlung radiation provides information

on energy and distribution of REs

When eleciron changes its
trajectory it emits photons

.—8
Eg  MeV electrons — MeV y rays
« y rays (HXRs) are forward beamed
based on RE energy
* fe(E,, E.) produces unique
bremssirahlung spectrum
DiIll-D
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Bremsstrahlung radiation provides information

on energy and distribution of REs

 When electron changes its
trajectory it emits photons

 MeV electrons — MeV y rays

« y rays (HXRs) are forward beamed
based on RE energy

* fe(E,, E.) produces unique
bremsstrahlung spectrum

pinhole

« DIII-D Gamma Ray Imager (GRI)
provides 2D view of RE
sightlines bremssirahlung emission [1-4]

array of
BGO
detectors

"]
—
lead collimator block
for scale
[1] Pace et al. RSI 2016 [2] Cooper et al.RSI 2016
D"’.D [3] Paz-Soldan et al. PRL2017  [4] Paz-Soldan et al. PoP 2018
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Bremsstrahlung radiation provides information

on energy and distribution of REs

 When electron changes its
trajectory it emits photons

 MeV electrons — MeV y rays

« y rays (HXRs) are forward beamed
based on RE energy

* fe(E,, E.) produces unique
bremsstrahlung spectrum

pinhole

« DIII-D Gamma Ray Imager (GRI)
provides 2D view of RE
sightlines bremssirahlung emission [1-4]

>

array of
BGO
detectors

. See also poster on RE orbit ftomography by

lead collimator block - Luke Stagner on Thursday
for scale
[1] Pace et al. RSI 2016 [2] Cooper et al.RSI 2016
D"’_D [3] Paz-Soldan et al. PRL2017  [4] Paz-Soldan et al. PoP 2018
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« Experiment and diagnostics

* Frequency chirping

« RE distribution function

« Operating space

» Possible driving mechanism and candidate instability

« RE-driven instabilities at higher collisionality

Dil-D
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RE loss increases under decelerating loop voltage

1,[100 KA]—

#175776

HXR - RE losses [a.u.]

| "‘“‘//M
0.85 i f
HXR - RE confined [a.u.] ™
8 L | I | ]
ECE T g [keV]

166 1.68 1.7 1.72
t [s]

Dil-D
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Large decelerating voltage with
magnitude comparable with
breakdown voltage is applied to
RE beam

This causes large fluctuations of
wall and core hard X-ray signals
(from lost and confined REs)

Also, spikes of ECE are detected

These are clear signs of RE-driven
instabilities

Now take a closer look at these
instabilities

A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019



RE loss correlates with magnetic fluctuations at 1-7 MHz

#175776

':.6 A
s5
04 | 5
S 2 ﬂfﬁ RE:iObiﬁ 4
- ]
82 v
uh- "

11

1670 1680 1690 1700 1710 1720
t [ms]

* Fluctuations of toroidal magnetic field are seen in spectrograms

Dil-D
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o o

Frequency [MHz]
=N

N W

RE loss correlates with magnetic fluctuations at 1-7 MHz

#175776

HXR - |

RE loss #175776

(&)]

H

1 670 1680 1690 1700 1 71 0-- 1 720
t [ms] .

Frequency [MHz]
(d

1684 14688 1692 1696 1700
t [ms]

* Fluctuations of toroidal magnetic field are seen in spectrograms
« They have clear chirping nature

Dil-D
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Frequency [MHz]

—

H O

RE loss correlates with magnetic fluctuations at 1-7 MHz

#175776 HXR -
RE confined

HXR - ' |
RE loss
.' Y, 6 e e T T T R
2| ¥ 58
! I§. __________________________
| A e TS 1 T e >4
1670 1680 1 690 1700 1 71 0-- 1 720 c
o
t [ms] . D 3 it oo~ Sl it B ROl
(o3
o
e g e e s . oy iyt g——
1684 1688 1692 1696 1700
t [ms]

* Fluctuations of toroidal magnetic field are seen in spectrograms
« They have clear chirping nature and correlate with RE loss signal

Dil-D
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High frequency range magnetic fluctuations (30-80 MHz)

show no correlation with RE loss

#175776

Frequency [MHz]

1732 1736 1740
Time [ms]

+ Two frequency bands of magnetic fluctuations: 1-10 MHz and 30-80 MHz
* High frequency fluctuations do not drive observable RE loss

Dil-D
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Frequency of instabilities has Alfvénic dependence on B,

#175771

Frequency [MHz]

B N R S S N 8 4 AN U 3 R 5 3 405 A S B0 A A SR 2
1650 1670 1690
Time [ms]

* RE beam moves to HFS and senses increasing B, « 1/R (n,=constant)

Dil-D
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Frequency of instabilities has Alfvénic dependence on B,

— #175771 | ' Jo
N | v
X 5 . %
= A
5 o
= v N
S &’ linear fit
L. ‘ 7

0 B0 35 LA KOG30 50033000 G A A i P 2. r .

1650 1670 1690 2.2 24
Time [ms] B, [T]

* RE beam moves to HFS and senses increasing B, « 1/R (n,=constant)
- f(B,) dependence is Alfvénic: f, x v, x B,

Dil-D
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Frequency of instabilities has Alfvénic dependence on B,

. #175771 | T @
N § ‘ 25 N 3.9 -
= = 7
> - ) 7
2B 3 >
g 4 23 § 3'7 | 0 7
s B 3 o/ linear fit
L preapas Lt | ,/
B0 04 AR AT KOG AR A T I 38095 RIS T A oy s 21 t ' |
1650 1670 1690 2.2 2.4
Time [ms] B 5 [T]
W 60 &
> &R
;-; ),j:“ ~linear fit
'-l- 40 j ‘ il 2 i (C /\/ V
1710 1720 1730 1740 213 2.15
Time [ms] B y [T]

* RE beam moves to HFS and senses increasing B, « 1/R (n,=constant)
* f(B,) dependence is Alfvénic: f, x v, x B, for both frequency bands

Dil-D
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« Experiment and diagnostics

* Frequency chirping

« RE distribution function

« Operating space

» Possible driving mechanism and candidate instability

« RE-driven instabilities at higher collisionality

Dil-D

29 MTJIJN.CIL FUEE-D.I".I' FACILITY

A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019



Modification of RE energy distribution function is

measured during frequency chirping

spectrum before chirping  RE distribution function measured
5| H1STT before chirping observed has a

X\ | bump
bump

3 | RE spectrum |
0 9 10
E [MeV]

Dil-D
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Modification of RE energy distribution function is

measured during frequency chirping

spectrum before chirping - RE distribution function measured
2 5 HISTIS before chirping observed has a
5, 1\ | bump
= bump
= 3/RE 5pe°t";"‘ - - Bump is a potential source of free
0 10 . crers
E [MeV] energy to drive instabilities
* Formation of the bump can be
explained by interplay between
RE acceleration by electric field
and collisional damping on D,
bound elecirons [1]
D"’_D [1] Lvovskiy et al. RE beam dynamics at low plasma density in DIlI-D. Submitted to Nucl. Fusion
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Modification of RE energy distribution function is

measured during frequency chirping

spectrum before chirping spectrum during chirping  « RE distribution function measured
: | #175776 -
2 5 e | =\ /time | before chirping observed has a
5, 1\ | bump
s bump 4 At=05ms
= 3/RE Spect”;m | |REspectra - Bump is a potential source of free
0 10 3 5 7 . -
E [MeV] E [MeV] energy to drive instabilities

* Formation of the bump can be
explained by interplay between
RE acceleration by electric field
and collisional damping on D,
bound elecirons [1]

* Relaxation of RE f(E) during
chirping events is directly
measured

D"’_D [1] Lvovskiy et al. RE beam dynamics at low plasma density in DIlI-D. Submitted to Nucl. Fusion

32 AN ke oA A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019



Modification of RE energy distribution function is

measured during frequency chirping

spectrum bhefore chirping spectrum during chirping  « RE distribution function measured
: | #175776 . e
2 5 e | =\ /time | before chirping observed has a
5, 1\ | bump
s bump 4 At=05ms
= 3/RE Spect”;m | |REspectra - Bump is a potential source of free
0 10 3 5 7 .. -
E [MeV] E [MeV] energy to drive instabilities
: #175776 .
5| .+ Formation of the bump can be
time '\ explained by interplay between
4 M=05ms RE acceleration by electric field
RE SP"';"" — and collisional damping on D,
E [MeV] bound elecirons [1]

* Relaxation of RE f(E) during
chirping events is directly
measured

D"’_D [1] Lvovskiy et al. RE beam dynamics at low plasma density in DIlI-D. Submitted to Nucl. Fusion
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34

Modification of RE energy distribution function is

measured during frequency chirping

spectrum before chirping

spectrum during chirping

#175776|

\

bump

hi

‘ _ #175776
‘ ‘\»§;t|n1e ,
At=0.5ms

J'WEITJIJN.CII. FUE\’-D.I".I' FACILITY

RE spectrum | RE spectra
0 5 10 3 5 7
E [MeV] E [MeV]
#T75776
5 L i
time '\
4 At=0.5ms
RE spectra
3 S 7
E [MeV]
' #75776
) s
\
4 At=1ms
RE spectra |
3 9 7
E [MeV]
Dill-D

« RE distribution function measured

before chirping observed has a
bump

Bump is a potential source of free
energy to drive instabilities

Formation of the bump can be
explained by interplay between
RE acceleration by electric field
and collisional damping on D,
bound elecirons [1]

Relaxation of RE f(E) during
chirping events is directly
measured

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIlI-D. Submitted to Nucl. Fusion
A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019



Modification of RE energy distribution function is

measured during frequency chirping

spectrum before chirping spectrum during chirping RE distribution function measured
' | #175776 A
2 5 e | _\ /time = before chirping observed has a
S 4 \ | bump
S bump 4. At=05ms
2 3.RE sPec":"' | [REspectra - Bump is a potential source of free
0 10 3 5 7 . . egege
E [MeV] E [MeV] energy to drive instabilities

5 #175776, * Formation of the bump can be
time '\ explained by interplay between
4 At=05ms RE acceleration by electric field

RE SPe;"a o and collisional damping on D,
E [MeV] bound electrons [1]
: #ITTe « Relaxation of RE f(E) during
‘ chirping events is directly
4 At=1ms measured
RE spectra |
3 5 7  This supports interactions between
E [MeV] REs and instabilities
D"’_D [1] Lvovskiy et al. RE beam dynamics at low plasma density in DIlI-D. Submitted to Nucl. Fusion
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« Experiment and diagnostics

* Frequency chirping

« RE distribution function

- Operating space

» Possible driving mechanism and candidate instability

« RE-driven instabilities at higher collisionality

Dil-D
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Chirping in low frequency range causes sirongest RE loss

7.5 5110 Wil — - Instabilities are observed in two
& ?;0:80 MH; distinct frequency ranges: 0.1-10
< 5 £ ; MHz and 30-80 MHz
E 2.5 instabilities - They are triggered at low plasma
g . density and decelerating voltage

0 0 10
Uloop [V]
DIII-D
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Chirping in low frequency range causes sirongest RE loss

7.5 * Instabilities are observed in two
& distinct frequency ranges: 0.1-10
o= 5 MHz and 30-80 MHz
E 25" k& - They are triggered at low plasma

g . density and decelerating voltage

* Low freq. chirping (1-3 MHz)
causes the strongest magnetic

V
N:req. range fluctuations (AB,)
> [MHz]:
05 1
AB¢ [a.U]

Occurance is spectra
“L,Qg

o

Dil-D
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Chirping in low frequency range causes strongest RE loss

Occurance is spectra

39

— "30:1-10 MHz
;'_’E 3
=
Zﬂ: 2.9| ‘: instabilities
Vo4 \
-10 0 10
loop [V]
wreq. range Freq. range
~ [MHz]: [MHZ]:
HJ
3 s
et }
o
\ 50-70
0 05 1 0 0.5 1
AB, [a.u] A HXR - RE loss [a.u.]
Dill-D
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Instabilities are observed in two
distinct frequency ranges: 0.1-10
MHz and 30-80 MHz

They are triggered at low plasma
density and decelerating voltage

Low freq. chirping (1-3 MHz)
causes the strongest magnetic
fluctuations (AB,)

Low freq. chirping (1-3 MHz)
causes the strongest change of RE
loss signal (AHXR)

Af changes by 0.3-2.4 MHz on 0.1
ms (local width) and 0.3-1.8 ms
(full width) time scales

A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019



« Experiment and diagnostics

* Frequency chirping

« RE distribution function

« Operating space

« Possible driving mechanism and candidate instability

« RE-driven instabilities at higher collisionality

Dil-D
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Possible mechanism of instabilities: REs drive Alfvénic

waves, which scatter REs and increase RE loss

» Decelerating loop voltage

#175783

46 | presumably leads to strong non-
z | monotonic feature (bump) at RE
> 44 distribution function
3 42 » This excites Alfvénic waves
(U]
I.Ih_ V4 ° ° °

0 « Alfvenic waves interact with REs,

1725 1730 1735 scatter them and increase RE loss
Time [ms]

» Fast relaxation of RE distribution
spectrum before chirping spectrum during chirping function can explqin frequ ency

#175776 ‘ #175776 . . . .
g 5 S | chirping consistent with the hole-
2 \ | \ clump model [1]
S bump 4! At=1ms
o

3 ORE sPecm;m — RE sPegtra c - Fast pitch-angle scattering of REs
E [MeV] E [MeV] can cause the observed spikes of

ECE
D"’-D [1] Berk, Breizman, Ye. PRL 1992
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Compressional Alfvén eigenmodes are most likely

candidates for observed instabilities

————ine bast lompstabilyZoe L [1] - Fundamental freq. of observed
o ICE :E ° egoge °
£ | = instabilities lies between 1-10 MHz
CAE ===

Alfven continuum 1

e e )
> Fo sscsarsecltnganemes=mT
®) s
Pt T 3 2 NIVt S
L . : L VAT VI
g CAF i % T R
| I T —.,.N,&E
i - KTAE EAE

[ core TAE p——

i TMEY s,

e r-TAE :
L . ___‘\:_ r-KB,M
| _r-Fishborie . kpNy ;
o |—Eishbone N A
! ! 1 | 1 1 1 | ! 1 1 | 10 |\‘..'|'- | 1 1
0.0 0.2 0.4 0.6 0.8 1.0

FLUX SURFACE

Dili-D [1] Heidbrink PoP 2002
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Compressional Alfvén eigenmodes are most likely

candidates for observed instabilities

e astion petaly 299 gy [l - Fundamental freq. of observed
S e i Le== instabilities lies between 1-10 MHz

For given plasma parameters:
— fci = 15 MHz

B 4
e A~ -
Ak g o B e,
L mmmmmmete] . 7
------ ~. 5%
~ . =
LS N o N
Ve, ., A s\
M. ~ o< \ » b
= S - ~ ~ Y G
~ g - A R PR X
o eSS - ~ ., \ 7%
~ s, 3 N7 S
.~ TN NN A

>
&)
pd
L T .
3 OA | = = s = e A
g __________ O NAE
w N KTAE EAE
core TAE o
I TAE |
: T B r-TAE §
I . . -—x-r-KBM
|_r-Fishborie . gy )
o, |—Fishbone N A
PR NN s T S T CHN i RO (R 30 . o TR W
0.0 0.2 0.4 0.6 0.8 1.0
FLUX SURFACE

Dili-D [1] Heidbrink PoP 2002
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Compressional Alfvén eigenmodes are most likely

candidates for observed instabilities

—The Eastlonnsiabilly o [1] - Fundamental freq. of observed
I E :: ° eogege L]
A -—-=——-— - - - — - - BRSS instabilities lies between 1-10 MHz
P =~ |
[ CAE b .
S o _- * For given plasma parameters:
/Alfven continuum a fc‘ ~ 15 MHz
- __________ . 1 — fA 1.5 MHz
CZ) . \\.\ _____ :_‘-‘:;\':" A 1 /
2 o b B W, - Compressional Alfvén
N - EAEN’*E eigenmodes (CAEs) are the most
- - core TAE KE ? likely candidates for kinetic
L W instabilities in the observed
E 4, - frequency region
E k. A— r-TAE L 9 yreg
I . 4 ——=¢-r-KBM
| _cFishbore . kpyy *_
o, |—Fishbone N LN s
N PRI M TR s SO Y O S ¢ | SRR

0.0 0.2 0.4 0.6 0.8 1.0

FLUX SURFACE

D"’-D [1] Heidbrink PoP 2002
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Compressional Alfvén eigenmodes are most likely

candidates for observed instabilities

e fast nlpstaoiliyZee . [1] - Fundamental freq. of observed
I E :: L] egeoge (]
A -—-=——-— - - - — - - BRSS instabilities lies between 1-10 MHz
P =~ |
{ CAE b :
S o _- * For given plasma parameters:
/Alfven continuum a fc‘ ~ 15 MHz
R S ) . — fa = 1.5MHz
o L. T - /
2 o b B W, - Compressional Alfvén
e T EAEN’*E eigenmodes (CAEs) are the most
- - core TAE K-Tf ? likely candidates for kinetic
E L W instabilities in the observed
z : frequency region
P r-TAE : 9 yreg
R wla
| _cFishborie | ey /% . ] « Separate loops will be installed to
o.: I—Fishbone X ¥ % 1% .
' p Toen 5 F o oon i 8 M. 4 measure toroidal numibers and
0.0 0.2 0.4 0.6 0.8 1.0 . .
FLUX SURFACE polarization

See poster by Genevieve Degrandchamp
on Thursday for details

D"’-D [1] Heidbrink PoP 2002
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Cherenkov resonance is a possible driving mechanism

« Anomalous Doppler and Cherenkov
resonances are possible excitation
mechanisms

Wee Safisfied at large k;
© =Rk =" [k, =50-300 m")

Satisfied at small I<||

o=k =00-2m)

Dil-D
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Cherenkov resonance is a possible driving mechanism

« Anomalous Doppler and Cherenkov
resonances are possible excitation
mechanisms

Wee Safisfied at large k;
© =Rk =" [k, =50-300 m")
Satisfied af small k;,

o=k =00-2m)

« Assume cold plasma dispersion
relation at small k =k <5 m!

w = kVA\/l +kifc?/wz,;

Dil-D
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Cherenkov resonance is a possible driving mechanism

« Anomalous Doppler and Cherenkov

k | 'z‘n'n_; T kl'l._,'l'( resonances are possible excitation
N100 - 47 = :

E F ATV, =V mechanisms

- I wce Satisfied at large k
0 s AT - e=kVi—==  =50-300m) |
o r Experimental 4 I

NI L rond e _ satisfied at small k,
c O w = kyV) (k, =0.1-2m")

« Assume cold plasma dispersion

. ~ »
Cherenkov resonances at different K| relation at smaill kll k<5m

w = kVA\/l +kifc?/wz,;

« Cherenkov resonance is satisfied for
experimental conditions

Dil-D
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Resonant RE orbits can be used to locate the RE bump

| | | « Plasma equilibrium and RE orbits are
21 | calculated for the early stage of
chirping instabilities

_n/m

=2« Analysis of toroidal (wg) and
- poloidal (wy) transit frequencies
provides wave-particle resonances:

19 Bump _ Qpm = Nwy, —Mmwg —w =0

1.85
5I 10 15
E [MeV]

Example of n/m=1/3 resonant mode

Assumed: pitch-angle = =1 (WRT to current)

frequency = 3 MHz
Dill-D
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Resonant RE orbits can be used to locate the RE bump

n/m=1/10 1/91/8 /7 1/6 1/5 * Plasma equilibrium and RE orbits are
calculated for the early stage of
chirping instabilities

2.1 1/4

25 - Analysis of toroidal (wg) and

- poloidal (wy) transit frequencies
provides wave-particle resonances:

4/10 _ .
1.85 - : .
e Calculations of RE loss on resonant

orbits can be used for bump
- [MeV]m 13 localization (modelling input is

welcome!
Example of resonant modes )

forn=0...4and m=0...10

Assumed: pitch-angle = =1 (WRT to current)
frequency = 3 MHz

i

Dil-D
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« Experiment and diagnostics

* Frequency chirping

« RE distribution function

« Operating space

» Possible driving mechanism and candidate instability

- RE-driven instabilities at higher collisionality

Dil-D
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RE-driven MHz instabilities are also observed at high

plasma collisionality

Focus so far: RE plateau

/ « Chirping instabilities are accessed
1 |#1757¢8 quteau ’ - during the RE plateau at very low
0.5 | P I [MA] . plasma density
Ohmic hc:sek £
0 —/__ Ohmic phase[N——*—F——— ~__
6 L
3 L
0
6 L
3 L
0 | |
Arll IineJ_'L]l, Dg line _|
1 2

Dil-D
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RE-driven MHz instabilities are also observed at high

plasma collisionality

Current quench
/ | « Chirping instabilities are accessed
/ RE - during the RE plateau at very low

, L 1, [MA] ] plasma density
__ Ohmic phase|~>——"—""—""—"—~

 #175768

» RE-driven instabilities are also
detected right after impurity
injection - during the current
quench, when plasma is dense

— Most prominent after massive
gas injection

O Wo OWwWo O O

AﬂlﬁneJJl]f D, line 1
1 2

Dil-D
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RE-driven MHz instabilities are also observed at high

plasma collisionality

i | » Chirping instabilities are accessed
LELTE Team cuxe during the RE plateau at very low
plasma density

w

-100

» RE-driven instabilities are also
detected right after impurity
injection - during the current
quench, when plasma is dense

— Most prominent after massive
gas injection

-150

Frequency [MHz]
N

-

{200

Power/frequency (dB/Hz)

» These instabilities can be
responsible for failure of RE beam
formation

Dil-D
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RE-driven MHz instabilities are also observed at high

plasma collisionality

| Chirping instabilities are accessed
LEARE e woe during the RE plateau at very low
plasma density

3 « RE-driven instabilities are also
1w ¢ detected right after impurity
iy | , B = jinjection - during the current
20 L ¢e ° " ™ quench, when plasmais dense
#177028 — Most prominent after massive
" | gas injection
gO.S
: No RE beam case » These instabilities can be
: J = responsible for failure of RE beam
: - ?; formation
g 3 °* Great interest for RE control in

tokamaks!

Dil-D
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RE-driven instabilities observed during formation of post-

disruption RE beam sometimes presumably kill it [1]

#177028
No RE beam case

F-N

gs . 5 « Disruptions without formation of RE
= -100
2, beam show clear extended
2 g fluctuations of magnetic signals
30 20 & during the current quench
#177030 -
54 Yes RE beam case 3
s3 -100 2 . .
3, s g * RE loss correlates with MHz magnetic
s " §{ «— fluctuations in the frequency range of
o o
£ B 0.1-3 MHz
0
D"’-D [1] See much more detail in Lvovskiy et al. PPCF 2018
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RE-driven instabilities observed during formation of post-

disruption RE beam sometimes presumably Kkill it [1]

#177028

4 E [ ] (] (] °
z, No RE beam case g - Disruptions without formation of RE
= -100

2, beam show clear extended

4 g fluctuations of magnetic signals
30 20 & during the current quench
54 Yes RE beam ‘ N | §
3 -100 < . .
3, REloss/s  RE loss correlates with MHz magnetic
s " §{ «— fluctuations in the frequency range of
£ , ‘ , 200 § 0.1-3 MHz

0 2 4 6 8 10 12 *
t |'Disr [ms]

4 #177028 = . .
2‘3 3 « These magnetic fluctuations appear
> g when RE energy E,; exceeds 2.5-3
3 wi / MeV
s -200 ¢

0 2
4 F
‘JE_:.S -100 g-;;
§1 -200 %;

0 SN o= AO-

° 2 4*-*msr L [1] See much more detail in Lvovskiy et al. PPCF 2018
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RE-driven instabilities observed during formation of post-

disruption RE beam sometimes presumably Kkill it [1]

#177028
No RE beam case

F-N

z, . s  Disruptions without formation of RE
= -100 <

2, beam show clear extended

g g fluctuations of magnetic signals
30 cad during the current quench
54 Yes RE beam §
3 -100 < . .
3, RE oss/5 * RE loss correlates with MHz magnetic
4 | ” § «— fluctuations in the frequency range of
£ , ‘ ; i 0.1-3 MHz

0 2 4 6 8 10 12 *
t-iDisr [ms]

4 #177028 = . .
2‘3 3 « These magnetic fluctuations appear
3, 3 when RE energy E,; exceeds 2.5-3
MeV
g1 5
s -200 ¢

:
gs o0 B * Varying pre-disruption Ip and
B amount of injected Ar we can switch
5 -150 3
2 g between cases w/ and w/o RE beam
e -200 g

° 2 4*-*Disr sy [1] See much more detail in Lvovskiy et al. PPCF 2018
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CAEs can be excited by REs with bump-on-tail f(E) via

Cherenkov resonance [1]

5
4 « Collisional and pitch-angle
2 scattering of REs by argon nuclei
= can lead to formation of RE
52 distribution function with bump-on-
& 1 fL" [2'3]
0

[1] Chang Liu et al. In preparation
[2] Hesslow et al. PRL 2017

D"’-D [3] Chang Liu et al. PRL 2018
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CAEs can be excited by REs with bump-on-tail f(E) via

Cherenkov resonance [1]

5
4 « Collisional and pitch-angle
9 scattering of REs by argon nuclei
S 3 .
= can lead to formation of RE
52 distribution function with bump-on-
¥ .
L tail [2,3]
9  Quasilinear simulations show
excitation of CAEs via Cherenkov
8 resonance
~
Q
]
P
S
<
S 4
S
52
h |
0 2 4 3 8
Freq- [MHZ] [1] Chang Liu et al. In preparation
[2] Hesslow et al. PRL 2017
DiINn-=0D [3] Chang Liu et al. PRL 2018
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CAEs can be excited by REs with bump-on-tail f(E) via

Cherenkov resonance [1]

« Collisional and pitch-angle
scattering of REs by argon nuclei
can lead to formation of RE
distribution function with bump-on-
tail [2,3]

« Quasilinear simulations show
excitation of CAEs via Cherenkov
resonance

pL/mgc
©O = N W b O

(o]

« Multiple modes can lead to
stochastic motion of REs towards the
wall

o~

« This increases RE radial transport

E N

Tor.mode number
N

0 2 4 5 8

Freq- [MHZ] [1] Chang Liu et al. In preparation
[2] Hesslow et al. PRL 2017

D"’-D [3] Chang Liu et al. PRL 2018
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RE-driven frequency chirping instabilities are observed

for the first fime in a tokamak

« Instabilities are accessed in low density RE plateau under applied
decelerating loop voltage

*  Frequency chirps by 0.3—-2.4 MHz on timescale of 1 ms
« There are two frequency regions: 1-10 MHz and 30-80 MHz
— Low-frequency instabilities correlate with increased RE loss

- Modification of RE energy distribution function is measured during
chirping in low-frequency region consistent with hole-clump model

 Candidate modes are CAEs driven by non-monotonic RE distribution
function via Cherenkov resonance

« Similar frequency instabilities correlated with intermittent RE loss are
also observed at high plasma collisionality - during current quench

— They are presumably responsible for non-sustainable RE beam
— Modelling shows excitation of CAEs and increased RE radial transport

DIIlI-D A
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(Highlight slide) Rapid frequency chirping instabilities driven by

runaway electrons are observed for the first fime in a fokamak

 Instabilities are accessed in low
density post-disruption runaway
plasma under applied decelerating 32
voltage in DIII-D

* Frequency chirps by 0.3-2.4 MHz
on timescale of 1 ms

* There are two distinct frequency i
regions: 1-10 MHz and 30-80 MHz

#175776

Frequency [MHz]
(3, ]

. A 1732 | 1734 1736 1738 140
— Low-frequency instabilities T

COI’I’e|OTe W|Th IﬂTermITTeﬂT RE |OSS ngneﬁc specfrogrqm of frequency chirping

instabilities driven by runaway electrons in DIII-D
Lvovskiy et al. Observation of rapid frequency chirping

* Modification of RE energy

distribution function is measured instabilities driven by runaway electrons in a fokamak.
during chirping in low-frequency Submitted to Nucl. Fusion

region consistent with hole-clump

model

DIII-D A
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BONUS SLIDES

Dil-D
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Approximate phase space sensitivity of RE diagnostics

Electron (a)  Distant HXR

Cyclotron Detectors

S Emission
8 5o |l (ECE)
< Visible Synchrotron
%, Emission (SE)
= 30
- "
é Gamma Ray _

Imager (GRI)

00 10" - 20 30
E (MeV)

Paz-Soldan et al. PoP 2018

Dil-D
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Backup: RE spectrum is reconsiructed from HXR

specirum using onion-peel method

Onion peel method from high
energy down can be used to go
from HXR to electron specirum

— Zero pitch angle and spatial
homogeneity are assumed

log1o f(Ey)
HXR spectrum

20 30 40 50
Ey(MeV)

log1o f(Ee)

.. RE spectrum

‘.

|og10 GRI ’YIS

1T W Ao o

|Qg10 GRleIs

E-3

spectrum before chirping

spectrum during chirping

#75776 — #175776 |
1660 ms time 1695.5 ms
HXR spectrum HXRlspect(a
bump
RE spectrum | RE spectra .
5 10 3 5 7

E [MeV]

E [MeV]

HXR and RE spectra in the experiment
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Backup: DIlII-D gamma ray imager (GRI) provides

2D view of RE bremssirahlung emission

pinhole

array of
BGO

detectors sightlines

2
-
for scale

lead collimator block

* GRIlis a pinhole camera

 Its array consists of gamma scintillator
detectors (up to 123 places)

* Body and collimator block are made of

lead ( = 190 kg)
[Pace et al. RSI 2016]

Dil-D
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__Aluminium

~~J housing

{1

- Preamplifier
Photodiode

BGO crystal

Aluminium
housing

BGO detector

Collimator Block
Toroidal Field Coil

W“@m‘ f \;

View at Tangency Plane?) *[

Rmmm




Backup: Bremssirahlung spectra can be found

using pulse height analysis. Example: QRE shot

Pulses over time windows
L R L L I B

15 MMMM pulse
height

Lok s g

03 mMWMMWmem%A

GRI signal [V]

I PRI RS RTE B
0.0 0.2 0.4 0.6 0.8 1.0
Time (ms)

Histogram of pqlge heighig

 Time traces are comprised of pulses
from distinct gamma particles

« Gamma particles are analyzed via
pulse height analysis (PHA)

« Bremsstrahlung spectrum hardens in
o L E

the course of time = | \

e height |

more high- =
energy
gammas

pulse

10 20 30
Y ray energy (MeV)

[Cooper et al. RSI 2016]
DiIll-D
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Backup: Measurements during the RE plateau regime
are challenging - upgrade with fast gamma detectors

Gamma flux due to
bremsstrahlung emission is
higher by 103-104 in RE
plateau regime compared to

QRE
« BGO detectors are usually 60 | BGO+LMPCC
saturated after the disruption _
T 40 BGO+PIN|
« New LYSO+MPPC detectors >
are capable to measure S
during the post-disruption S 20 100 ns.pulse!
stage ) |
Collaboration with 0 LYSO+MPPC ]
U. Milano-Bicocca . ‘ ‘
0 5 10 15 20 25
time [ps]
DiINn-=0D Response of gamma detectors
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Backup: Frequency dependence on ng is stronger than

Alfvénic

N 3 ‘N
N T
= B =
>28 o
c ; e
Py (<}
11 g
o o
u- 0 s hagan s I 7 e s 7t S i \ ) -
1635 1645 1655

Time [ms] ne [10"° m™]

- Frequency decreases as n;! while typical Alfvénic dependenceis n, 1/2

» Possibly explained by plasma non-uniformity during the argon purge

Dil-D

70 AN siege oA A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019



Backup: More energetic RE distribution leads to no RE

beam

2 YesRE

o= 1.2 MA

No RE
beam |

Cases without RE beam correlate
with more energetic RE distribution

Increased argon quantity reduces
the number of high-energy REs and
correlates with successful RE beam

beam .
1177008 — 50 torr 1 formation
#177029 — 90 torr-|
o L#177030 | =130 torr -1
0 5 10
E_(MeV) Integrated power of MHz frequency
2 . magnetic signals increases with
—_ % No plateau increase of max Eg;
> ¢ RE plateau B
815 = . .
5 a* Increased pre-disruption plasma
3 L/ ’, - current increases the maximum
8 1. ¢ U
energy of REs
s Larger Ip >
- More Ar
0.5 ' '
4 5 ) 7 8 9

max E . [MeV]
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Backup: Possible mechanism of suppression of RE

beam formation with two actuators

Current quench |
¥ increases
increases L LdrgerfUloop dt <———[ Large Ip ]
[ small ArMGI ) { .
: ~,| Larger population
neredses | of high-energy REs |

v

More powerful
instabilities

v , Wall
Loss of seed REs

v

No RE beam RE

Structure of
Electric
Field

Dil-D
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