Observation of Rapid Frequency Chirping Instabilities Driven by Runaway Electrons in DIII-D

A. Lvovskiy
with participation of

1Oak Ridge Associated Universities, Oak Ridge, TN, USA
2University of California, Irvine, Irvine, CA, USA
3General Atomics, San Diego, CA, USA
4Oak Ridge National Laboratory, Oak Ridge, TN, USA
5Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
6Università di Milano-Bicocca, Milan, Italy
7Princeton Plasma Physics Laboratory, Princeton, NJ, USA
8Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
9Institute for Plasma Science and Technology, CNR, Milan, Italy

16th IAEA Technical Meeting on Energetic Particles
Shizuoka City, Japan
September 4, 2019
Frequency chirping instabilities are observed for the first time driven by runaway electrons in tokamak.

- Energetic particles can drive instabilities through wave-particle resonances.
- Frequency chirping instabilities are often observed driven by fast ions in tokamaks.

GAE in NSTX

TAE in MAST

Frequency chirping instabilities are observed for the first time driven by runaway electrons in tokamak

- Energetic particles can drive instabilities through wave-particle resonances

- Frequency chirping instabilities are often observed driven by fast ions in tokamaks

- This talk: discovery of rapid frequency chirping driven by runaway electrons (REs) in DIII-D

Frequency chirping instabilities are observed for the first time driven by runaway electrons in tokamak

- Energetic particles can drive instabilities through wave-particle resonances
- Frequency chirping instabilities are often observed driven by fast ions in tokamaks
- This talk: discovery of rapid frequency chirping driven by runaway electrons (REs) in DIII-D
- MHz instabilities increase RE loss
- While poorer confinement is undesirable for fast ions, it can be beneficial for RE control and mitigation in tokamaks

Outline

• Experiment and diagnostics
• Frequency chirping
• RE distribution function
• Operating space
• Possible driving mechanism and candidate instability
• RE-driven instabilities at higher collisionality
Outline

- **Experiment** and diagnostics
- Frequency chirping
- RE distribution function
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality
RE-driven instabilities are accessed in low density post-disruption runaway plasma under decelerating voltage.

Post-disruption RE beam is deliberately produced in DIII-D after injection of small Ar pellet.
RE-driven instabilities are accessed in low density post-disruption runaway plasma under decelerating voltage

Post-disruption RE beam is deliberately produced in DIII-D after injection of small Ar pellet

Argon impurity is purged from RE beam by D₂ massive gas injection

- This 1) drastically reduces thermal electron density by two orders of magnitude and 2) provides large variability of applied loop voltage
RE-driven instabilities are accessed in low density post-disruption runaway plasma under decelerating voltage

- Post-disruption RE beam is deliberately produced in DIII-D after injection of small Ar pellet
- Argon impurity is purged from RE beam by D_2 massive gas injection
 - This 1) drastically reduces thermal electron density by two orders of magnitude and 2) provides large variability of applied loop voltage
 - RE-driven instabilities are observed when large decelerating loop voltage is applied to initially stable RE beam (→ next slide)
RE loss increases under decelerating loop voltage

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam
RE loss increases under decelerating loop voltage

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam
- This causes large fluctuations of wall and core hard X-ray signals (from lost and confined REs)
RE loss increases under decelerating loop voltage

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam
- This causes large fluctuations of wall and core hard X-ray signals (from lost and confined REs)
- Also, spikes of ECE are detected
RE loss increases under decelerating loop voltage

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam

- This causes large fluctuations of wall and core hard X-ray signals (from lost and confined REs)

- Also, spikes of ECE are detected

- These are clear signs of RE-driven instabilities
Outline

- Experiment and diagnostics
- Frequency chirping
- RE distribution function
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality
RE-driven plasma waves are detected via high-frequency measurements of magnetic signals

- Energetic REs can lead to excitation of plasma waves (*similar to fast ions*)

- High-frequency fluctuations of toroidal magnetic field are detected on DIII-D by RF-diagnostic [1,2]

- RF-diagnostic provides measurements up to 200 MHz

[2] Thome et al. RSI 2018
Bremsstrahlung radiation provides information on energy and distribution of REs

- When electron changes its trajectory it emits photons
- MeV electrons \rightarrow MeV γ rays
- γ rays (HXRs) are forward beamed based on RE energy
Bremsstrahlung radiation provides information on energy and distribution of REs

- When electron changes its trajectory it emits photons

- MeV electrons \rightarrow MeV γ rays

- γ rays (HXRs) are forward beamed based on RE energy

- $f_e(E_\parallel, E_\perp)$ produces unique bremsstrahlung spectrum
Bremsstrahlung radiation provides information on energy and distribution of REs

- When electron changes its trajectory it emits photons
- MeV electrons \rightarrow MeV γ rays
- γ rays (HXRs) are forward beamed based on RE energy
- $f_e(E_\parallel, E_\perp)$ produces unique bremsstrahlung spectrum
- DIII-D Gamma Ray Imager (GRI) provides 2D view of RE bremsstrahlung emission [1–4]

[1] Pace et al. RSI 2016
[3] Paz-Soldan et al. PRL 2017
Bremsstrahlung radiation provides information on energy and distribution of REs

- When electron changes its trajectory it emits photons
- MeV electrons \rightarrow MeV γ rays
- γ rays (HXR) are forward beamed based on RE energy
- $f_e(E_\parallel, E_\perp)$ produces unique bremsstrahlung spectrum
- DIII-D Gamma Ray Imager (GRI) provides 2D view of RE bremsstrahlung emission [1–4]

See also poster on RE orbit tomography by Luke Stagner on Thursday

[1] Pace et al. RSI 2016
[3] Paz-Soldan et al. PRL 2017
Outline

• Experiment and diagnostics
• Frequency chirping
• RE distribution function
• Operating space
• Possible driving mechanism and candidate instability
• RE-driven instabilities at higher collisionality
RE loss increases under decelerating loop voltage

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam

- This causes large fluctuations of wall and core hard X-ray signals (from lost and confined REs)

- Also, spikes of ECE are detected

- These are clear signs of RE-driven instabilities

- Now take a closer look at these instabilities
RE loss correlates with magnetic fluctuations at 1–7 MHz

- Fluctuations of toroidal magnetic field are seen in spectrograms
RE loss correlates with magnetic fluctuations at 1−7 MHz

- Fluctuations of toroidal magnetic field are seen in spectrograms
- They have clear chirping nature
RE loss correlates with magnetic fluctuations at 1–7 MHz

- Fluctuations of toroidal magnetic field are seen in spectrograms
- They have clear chirping nature and correlate with RE loss signal
High frequency range magnetic fluctuations (30–80 MHz) show no correlation with RE loss

- Two frequency bands of magnetic fluctuations: 1–10 MHz and 30–80 MHz
- High frequency fluctuations do not drive observable RE loss
Frequency of instabilities has Alfvénic dependence on B_ϕ

- RE beam moves to HFS and senses increasing $B_\phi \propto 1/R$ ($n_e=$constant)
Frequency of instabilities has Alfvénic dependence on B_ϕ

- RE beam moves to HFS and senses increasing $B_\phi \propto 1/R$ ($n_e=\text{constant}$)
- $f(B_\phi)$ dependence is Alfvénic: $f_A \propto v_A \propto B_\phi$
Frequency of instabilities has Alfvénic dependence on B_ϕ

- RE beam moves to HFS and senses increasing $B_\phi \propto 1/R$ ($n_e=$constant)
- $f(B_\phi)$ dependence is Alfvénic: $f_A \propto v_A \propto B_\phi$ for both frequency bands
Outline

• Experiment and diagnostics
• Frequency chirping
• RE distribution function
• Operating space
• Possible driving mechanism and candidate instability
• RE-driven instabilities at higher collisionality
Modification of RE energy distribution function is measured during frequency chirping.

- RE distribution function measured before chirping observed has a bump.
Modification of RE energy distribution function is measured during frequency chirping

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D_2 bound electrons [1]

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion
Modification of RE energy distribution function is measured during frequency chirping

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D\textsubscript{2} bound electrons [1]
- Relaxation of RE f(E) during chirping events is directly measured

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion
Modification of RE energy distribution function is measured during frequency chirping

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D_2 bound electrons [1]
- Relaxation of RE $f(E)$ during chirping events is directly measured

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion
Modification of RE energy distribution function is measured during frequency chirping

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D₂ bound electrons [1]
- Relaxation of RE f(E) during chirping events is directly measured

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion
Modification of RE energy distribution function is measured during frequency chirping

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D$_2$ bound electrons [1]
- Relaxation of RE f(E) during chirping events is directly measured
- This supports interactions between REs and instabilities

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion
Outline

- Experiment and diagnostics
- Frequency chirping
- RE distribution function
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality
Chirping in low frequency range causes strongest RE loss

- Instabilities are observed in two distinct frequency ranges: 0.1–10 MHz and 30–80 MHz
- They are triggered at low plasma density and decelerating voltage
Chirping in low frequency range causes strongest RE loss

- Instabilities are observed in two distinct frequency ranges: 0.1–10 MHz and 30–80 MHz
- They are triggered at low plasma density and decelerating voltage
- Low freq. chirping (1–3 MHz) causes the strongest magnetic fluctuations ($\Delta \vec{B}_\phi$)
Chirping in low frequency range causes strongest RE loss

- Instabilities are observed in two distinct frequency ranges: 0.1–10 MHz and 30–80 MHz.
- They are triggered at low plasma density and decelerating voltage.
- Low freq. chirping (1–3 MHz) causes the strongest magnetic fluctuations (ΔB_ϕ).
- Low freq. chirping (1–3 MHz) causes the strongest change of RE loss signal (ΔHXR).
- Δf changes by 0.3–2.4 MHz on 0.1 ms (local width) and 0.3-1.8 ms (full width) time scales.
Outline

• Experiment and diagnostics
• Frequency chirping
• RE distribution function
• Operating space
• Possible driving mechanism and candidate instability
• RE-driven instabilities at higher collisionality
Possible mechanism of instabilities: REs drive Alfvénic waves, which scatter REs and increase RE loss

- Decelerating loop voltage presumably leads to strong non-monotonic feature (bump) at RE distribution function

- This excites Alfvénic waves

- Alfvénic waves interact with REs, scatter them and increase RE loss

- Fast relaxation of RE distribution function can explain frequency chirping consistent with the hole-clump model [1]

- Fast pitch-angle scattering of REs can cause the observed spikes of ECE

Compressional Alfvén eigenmodes are most likely candidates for observed instabilities.

- Fundamental freq. of observed instabilities lies between 1–10 MHz

Compressional Alfvén eigenmodes are most likely candidates for observed instabilities

- Fundamental freq. of observed instabilities lies between 1–10 MHz
- For given plasma parameters:
 - $f_{ci} \approx 15$ MHz
 - $f_A \approx 1.5$ MHz

Compressional Alfvén eigenmodes are most likely candidates for observed instabilities

- Fundamental freq. of observed instabilities lies between 1–10 MHz
- For given plasma parameters:
 - \(f_{ci} \approx 15 \text{ MHz} \)
 - \(f_A \approx 1.5 \text{ MHz} \)
- Compressional Alfvén eigenmodes (CAEs) are the most likely candidates for kinetic instabilities in the observed frequency region

Compressional Alfvén eigenmodes are most likely candidates for observed instabilities

- Fundamental freq. of observed instabilities lies between 1–10 MHz
- For given plasma parameters:
 - $f_{ci} \approx 15 \text{ MHz}$
 - $f_A \approx 1.5 \text{ MHz}$
- Compressional Alfvén eigenmodes (CAEs) are the most likely candidates for kinetic instabilities in the observed frequency region
- Separate loops will be installed to measure toroidal numbers and polarization

See poster by Genevieve Degrandchamp on Thursday for details

Cherenkov resonance is a possible driving mechanism

- **Anomalous Doppler** and **Cherenkov resonances** are possible excitation mechanisms

\[\omega = k_{||} V_{||} - \frac{\omega_{ce}}{\gamma} \]

Satisfied at **large** \(k_{||} \)

\((k_{||} = 50-300 \text{ m}^{-1}) \)

\[\omega = k_{||} V_{||} \]

Satisfied at **small** \(k_{||} \)

\((k_{||} = 0.1-2 \text{ m}^{-1}) \)
Cherenkov resonance is a possible driving mechanism

- **Anomalous Doppler** and **Cherenkov resonances** are possible excitation mechanisms

\[
\omega = k \parallel V \parallel - \frac{\omega_{ce}}{\gamma}
\]

Satisfied at **large** \(k \parallel \)
\((k \parallel = 50–300 \text{ m}^{-1})\)

\[
\omega = k \parallel V \parallel
\]

Satisfied at **small** \(k \parallel \)
\((k \parallel = 0.1–2 \text{ m}^{-1})\)

- **Assume cold plasma dispersion relation at small** \(k \parallel \approx k < 5 \text{ m}^{-1} \)

\[
\omega = k V_A \sqrt{1 + k^2 c^2 / \omega_{pi}^2}
\]
Cherenkov resonance is a possible driving mechanism

- **Anomalous Doppler** and **Cherenkov resonances** are possible excitation mechanisms

 \[
 \omega = k_{\parallel} V_{\parallel} - \frac{\omega_{ce}}{\gamma}
 \]

 Satisfied at **large** \(k_{\parallel}\) (\(k_{\parallel} = 50-300\ m^{-1}\))

 \[
 \omega = k_{\parallel} V_{\parallel}
 \]

 Satisfied at **small** \(k_{\parallel}\) (\(k_{\parallel} = 0.1-2\ m^{-1}\))

- **Assume cold plasma dispersion relation at small** \(k_{\parallel} \approx k < 5\ m^{-1}\)

 \[
 \omega = k V_A \sqrt{1 + k_{\parallel}^2 c^2 / \omega_{pi}^2}
 \]

- **Cherenkov resonance** is satisfied for experimental conditions
Resonant RE orbits can be used to locate the RE bump

- Plasma equilibrium and RE orbits are calculated for the early stage of chirping instabilities
- Analysis of toroidal (ω_ϕ) and poloidal (ω_θ) transit frequencies provides wave-particle resonances:

$$\Omega_{nm} = n\omega_\phi - m\omega_\theta - \omega = 0$$

Example of $n/m=1/3$ resonant mode

Assumed: pitch-angle = −1 (WRT to current)
frequency = 3 MHz
Resonant RE orbits can be used to locate the RE bump

- Plasma equilibrium and RE orbits are calculated for the early stage of chirping instabilities
- Analysis of toroidal (ω_ϕ) and poloidal (ω_θ) transit frequencies provides wave-particle resonances:
 \[\Omega_{nm} = n\omega_\phi - m\omega_\theta - \omega = 0 \]
- Calculations of RE loss on resonant orbits can be used for bump localization (modelling input is welcome!)

Example of resonant modes for $n = 0...4$ and $m = 0...10$
Assumed: pitch-angle = −1 (WRT to current) frequency = 3 MHz
Outline

- Experiment and diagnostics
- Frequency chirping
- RE distribution function
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality
RE-driven MHz instabilities are also observed at high plasma collisionality

Focus so far: RE plateau

- Chirping instabilities are accessed during the RE plateau at very low plasma density
RE-driven MHz instabilities are also observed at high plasma collisionality

- Chirping instabilities are accessed during the RE plateau at very low plasma density
- RE-driven instabilities are also detected right after impurity injection – during the current quench, when plasma is dense
 - Most prominent after massive gas injection
RE-driven MHz instabilities are also observed at high plasma collisionality

- Chirping instabilities are accessed during the RE plateau at very low plasma density
- RE-driven instabilities are also detected right after impurity injection – during the current quench, when plasma is dense
 - Most prominent after massive gas injection
- These instabilities can be responsible for failure of RE beam formation
RE-driven MHz instabilities are also observed at high plasma collisionality

- Chirping instabilities are accessed during the RE plateau at very low plasma density
- RE-driven instabilities are also detected right after impurity injection – during the current quench, when plasma is dense
 - Most prominent after massive gas injection
- These instabilities can be responsible for failure of RE beam formation
- Great interest for RE control in tokamaks!
RE-driven instabilities observed during formation of post-disruption RE beam sometimes presumably kill it [1]

- Disruptions without formation of RE beam show clear extended fluctuations of magnetic signals during the current quench

- RE loss correlates with MHz magnetic fluctuations in the frequency range of 0.1–3 MHz

[1] See much more detail in Lvovskiy et al. PPCF 2018
RE-driven instabilities observed during formation of post-disruption RE beam sometimes presumably kill it [1]

- Disruptions without formation of RE beam show clear extended fluctuations of magnetic signals during the current quench

- RE loss correlates with MHz magnetic fluctuations in the frequency range of 0.1–3 MHz

- These magnetic fluctuations appear when RE energy E_{RE} exceeds 2.5–3 MeV

[1] See much more detail in Lvovskiy et al. PPCF 2018
RE-driven instabilities observed during formation of post-disruption RE beam sometimes presumably kill it [1]

- Disruptions without formation of RE beam show clear extended fluctuations of magnetic signals during the current quench
- RE loss correlates with MHz magnetic fluctuations in the frequency range of 0.1–3 MHz
- These magnetic fluctuations appear when RE energy E_{RE} exceeds 2.5–3 MeV
- Varying pre-disruption I_p and amount of injected Ar we can switch between cases w/ and w/o RE beam

[1] See much more detail in Lvovskiy et al. PPCF 2018
CAEs can be excited by REs with bump-on-tail $f(E)$ via Cherenkov resonance [1]

- Collisional and pitch-angle scattering of REs by argon nuclei can lead to formation of RE distribution function with bump-on-tail [2,3]

[3] Chang Liu et al. PRL 2018
CAEs can be excited by REs with bump-on-tail $f(E)$ via Cherenkov resonance [1]

- Collisional and pitch-angle scattering of REs by argon nuclei can lead to formation of RE distribution function with bump-on-tail [2,3]
- Quasilinear simulations show excitation of CAEs via Cherenkov resonance

[3] Chang Liu et al. PRL 2018
CAEs can be excited by REs with bump-on-tail \(f(E) \) via Cherenkov resonance [1]

- Collisional and pitch-angle scattering of REs by argon nuclei can lead to formation of RE distribution function with bump-on-tail [2,3]
- Quasilinear simulations show excitation of CAEs via Cherenkov resonance
- Multiple modes can lead to stochastic motion of REs towards the wall
- This increases RE radial transport

[3] Chang Liu et al. PRL 2018
RE-driven frequency chirping instabilities are observed for the first time in a tokamak

- Instabilities are accessed in low density RE plateau under applied decelerating loop voltage
- Frequency chirps by 0.3–2.4 MHz on timescale of 1 ms
- There are two frequency regions: 1–10 MHz and 30–80 MHz
 - Low-frequency instabilities correlate with increased RE loss
- Modification of RE energy distribution function is measured during chirping in low-frequency region consistent with hole-clump model
- Candidate modes are CAEs driven by non-monotonic RE distribution function via Cherenkov resonance
- Similar frequency instabilities correlated with intermittent RE loss are also observed at high plasma collisionality – during current quench
 - They are presumably responsible for non-sustainable RE beam
 - Modelling shows excitation of CAEs and increased RE radial transport
Rapid frequency chirping instabilities driven by runaway electrons are observed for the first time in a tokamak.

- Instabilities are accessed in low density post-disruption runaway plasma under applied decelerating voltage in DIII-D.
- Frequency chirps by 0.3–2.4 MHz on timescale of 1 ms.
- There are two distinct frequency regions: 1–10 MHz and 30–80 MHz.
 - Low-frequency instabilities correlate with intermittent RE loss.
- Modification of RE energy distribution function is measured during chirping in low-frequency region consistent with hole-clump model.

Magnetic spectrogram of frequency chirping instabilities driven by runaway electrons in DIII-D

Lvovskiy et al. Observation of rapid frequency chirping instabilities driven by runaway electrons in a tokamak. Submitted to Nucl. Fusion.
Approximate phase space sensitivity of RE diagnostics

Pitch Angle (θ, deg)

E (MeV)

Electron Cyclotron Emission (ECE)

Visible Synchrotron Emission (SE)

Gamma Ray Imager (GRI)

Distant HXR Detectors

Paz-Soldan et al. PoP 2018
Backup: RE spectrum is reconstructed from HXR spectrum using onion-peel method

- Onion peel method from high energy down can be used to go from HXR to electron spectrum
 - Zero pitch angle and spatial homogeneity are assumed

HXR and RE spectra in the experiment
Backup: DIII-D gamma ray imager (GRI) provides 2D view of RE bremsstrahlung emission

- GRI is a pinhole camera
- Its array consists of gamma scintillator detectors (up to 123 places)
- Body and collimator block are made of lead (≈ 190 kg)

[Pace et al. RSI 2016]
Backup: Bremsstrahlung spectra can be found using pulse height analysis. Example: QRE shot

- Time traces are comprised of pulses from distinct gamma particles
- Gamma particles are analyzed via pulse height analysis (PHA)
- Bremsstrahlung spectrum hardens in the course of time

[Cooper et al. RSI 2016]
Backup: Measurements during the RE plateau regime are challenging – upgrade with fast gamma detectors

- Gamma flux due to bremsstrahlung emission is higher by 10^3–10^4 in RE plateau regime compared to QRE

- BGO detectors are usually saturated after the disruption

- New LYSO+MPPC detectors are capable to measure during the post-disruption stage

Collaboration with U. Milano-Bicocca

Response of gamma detectors to a single gamma pulse
Backup: Frequency dependence on n_e is stronger than Alfvénic

- Frequency decreases as n_e^{-1} while typical Alfvénic dependence is $n_e^{-1/2}$
- Possibly explained by plasma non-uniformity during the argon purge
Backup: More energetic RE distribution leads to no RE beam

- Cases without RE beam correlate with more energetic RE distribution
- Increased argon quantity reduces the number of high-energy REs and correlates with successful RE beam formation
- Integrated power of MHz frequency magnetic signals increases with increase of max E_{RE}
- Increased pre-disruption plasma current increases the maximum energy of REs
Backup: Possible mechanism of suppression of RE beam formation with two actuators

- Small Ar MGI
 - Increases
- Current quench
 - Larger $\int U_{loop} \, dt$
 - Increases
- Larger population of high-energy REs
 - More powerful instabilities
- Loss of seed REs
 - No RE beam
- Large Ip
 - Increases