Observation of Rapid Frequency Chirping Instabilities Driven by Runaway Electrons in DIII-D

A. Lvovskiy¹

with participation of W.W. Heidbrink², C. Paz-Soldan³, D.A. Spong⁴, P. Aleynikov⁵, A. Dal Molin⁶, N.W. Eidietis³, C. Liu⁷, M. Nocente⁶, D. Shiraki⁴, L. Stagner⁸, K.E. Thome³, L. Giacomelli⁹, D. Rigamonti⁹, M. Tardocchi⁹

¹Oak Ridge Associated Universities, Oak Ridge, TN, USA
²University of California, Irvine, Irvine, CA, USA
³General Atomics, San Diego, CA, USA
⁴Oak Ridge National Laboratory, Oak Ridge, TN, USA
⁵Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
⁶Università di Milano-Bicocca, Milan, Italy
⁷Princeton Plasma Physics Laboratory, Princeton, NJ, USA
⁸Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
⁹Institute for Plasma Science and Technology, CNR, Milan, Italy

16th IAEA Technical Meeting on Energetic Particles Shizuoka City, Japan September 4, 2019

Frequency chirping instabilities are observed for the first time driven by runaway electrons in tokamak

- Energetic particles can drive instabilities through wave-particle resonances
- Frequency chirping instabilities are often observed driven by fast ions in tokamaks

[1] Fredrickson *et al.* PoP 2006
 [2] Pinches *et al.* PPCF 2004
 [3] Berk *et al.* NF 2006

Frequency chirping instabilities are observed for the first time driven by runaway electrons in tokamak

- Energetic particles can drive instabilities through wave-particle resonances
- Frequency chirping instabilities are often observed driven by fast ions in tokamaks
- This talk: discovery of rapid frequency chirping driven by runaway electrons (REs) in DIII-D

[1] Fredrickson et al. PoP 2006
 [2] Pinches et al. PPCF 2004
 [3] Berk et al. NF 2006

3 NATIONAL FUSION FACILITY

Frequency chirping instabilities are observed for the first time driven by runaway electrons in tokamak

SAN DIEGO

- Energetic particles can drive instabilities through wave-particle resonances
- Frequency chirping instabilities are often observed driven by fast ions in tokamaks
- This talk: discovery of rapid frequency chirping driven by runaway electrons (REs) in DIII-D
- MHz instabilities increase RE loss
- While poorer confinement is undesirable for fast ions, it can be beneficial for RE control and mitigation in tokamaks
 - [1] Fredrickson et al. PoP 2006
 - [2] Pinches et al. PPCF 2004
 - [3] Berk et al. NF 2006

Outline

- Experiment and diagnostics
- Frequency chirping
- **RE distribution function**
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality

Outline

- Experiment and diagnostics
- Frequency chirping
- **RE distribution function**
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality

RE-driven instabilities are accessed in low density postdisruption runaway plasma under decelerating voltage

A Post-disruption RE beam is deliberately produced in DIII-D after injection of small Ar pellet

RE-driven instabilities are accessed in low density postdisruption runaway plasma under decelerating voltage

- A Post-disruption RE beam is deliberately produced in DIII-D after injection of small Ar pellet
- B Argon impurity is purged from RE beam by D₂ massive gas injection
 - This 1) drastically reduces thermal electron density by two orders of magnitude and 2) provides large variability of applied loop voltage

RE-driven instabilities are accessed in low density postdisruption runaway plasma under decelerating voltage

- A Post-disruption RE beam is deliberately produced in DIII-D after injection of small Ar pellet
- B Argon impurity is purged from RE beam by D₂ massive gas injection
 - This 1) drastically reduces thermal electron density by two orders of magnitude and 2) provides large variability of applied loop voltage
- RE-driven instabilities are observed when large decelerating loop voltage is applied to initially stable RE beam (→ next slide)

 Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam
- This causes large fluctuations of wall and core hard X-ray signals (from <u>lost</u> and confined REs)

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam
- This causes large fluctuations of wall and core hard X-ray signals (from <u>lost</u> and confined REs)
- Also, spikes of ECE are detected

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam
- This causes large fluctuations of wall and core hard X-ray signals (from <u>lost</u> and confined REs)
- Also, spikes of ECE are detected
- These are clear signs of RE-driven
 instabilities

Outline

- Experiment and diagnostics
- Frequency chirping
- **RE distribution function**
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality

RE-driven plasma waves are detected via high-frequency measurements of magnetic signals

- Energetic REs can lead to excitation of plasma waves (similar to fast ions)
- High-frequency fluctuations of toroidal magnetic field are detected on DIII-D by RF-diagnostic [1,2]
- RF-diagnostic provides measurements up to 200 MHz

[1] Watson and Heidbrink RSI 2003[2] Thome *et al.* RSI 2018

- When electron changes its trajectory it emits photons
- MeV electrons \rightarrow MeV γ rays
- γ rays (HXRs) are forward beamed based on RE energy

- When electron changes its trajectory it emits photons
- MeV electrons \rightarrow MeV γ rays
- γ rays (HXRs) are forward beamed based on RE energy
- $f_e(E_{\parallel}, E_{\perp})$ produces unique bremsstrahlung spectrum

- When electron changes its trajectory it emits photons
- MeV electrons \rightarrow MeV γ rays
- γ rays (HXRs) are forward beamed based on RE energy
- $f_e(E_{\parallel}, E_{\perp})$ produces unique bremsstrahlung spectrum
- DIII-D Gamma Ray Imager (GRI) provides 2D view of RE bremsstrahlung emission [1-4]

[2] Cooper et al. RSI 2016

[4] Paz-Soldan et al. PoP 2018

- When electron changes its trajectory it emits photons
- MeV electrons \rightarrow MeV γ rays
- γ rays (HXRs) are forward beamed based on RE energy
- $f_e(E_{\parallel}, E_{\perp})$ produces unique bremsstrahlung spectrum
- DIII-D Gamma Ray Imager (GRI) provides 2D view of RE bremsstrahlung emission [1-4]

See also poster on RE orbit tomography by Luke Stagner on Thursday

 [1] Pace et al. RSI 2016
 [2] Cooper et al. RSI 2016

 [3] Paz-Soldan et al. PRL 2017
 [4] Paz-Soldan et al. PoP 2018

Outline

- Experiment and diagnostics
- Frequency chirping
- **RE distribution function**
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality

- Large decelerating voltage with magnitude comparable with breakdown voltage is applied to RE beam
- This causes large fluctuations of wall and core hard X-ray signals (from <u>lost</u> and confined REs)
- Also, spikes of ECE are detected
- These are clear signs of RE-driven instabilities
- Now take a closer look at these instabilities

RE loss correlates with magnetic fluctuations at 1–7 MHz

• Fluctuations of toroidal magnetic field are seen in spectrograms

RE loss correlates with magnetic fluctuations at 1–7 MHz

- Fluctuations of toroidal magnetic field are seen in spectrograms
- They have clear chirping nature

RE loss correlates with magnetic fluctuations at 1–7 MHz

- Fluctuations of toroidal magnetic field are seen in spectrograms
- They have clear chirping nature and correlate with RE loss signal

High frequency range magnetic fluctuations (30–80 MHz) show no correlation with RE loss

- Two frequency bands of magnetic fluctuations: 1–10 MHz and 30–80 MHz
- High frequency fluctuations do not drive observable RE loss

Frequency of instabilities has Alfvénic dependence on B_{ϕ}

• RE beam moves to HFS and senses increasing $B_{\omega} \propto 1/R$ (n_e=constant)

Frequency of instabilities has Alfvénic dependence on B_{ϕ}

- RE beam moves to HFS and senses increasing $B_{\varphi} \propto 1/R$ (n_e=constant)
- $f(B_{\varphi})$ dependence is Alfvénic: $f_A \propto v_A \propto B_{\varphi}$

Frequency of instabilities has Alfvénic dependence on B_{ϕ}

- RE beam moves to HFS and senses increasing $B_{\omega} \propto 1/R$ (n_e=constant)
- $f(B_{\varphi})$ dependence is Alfvénic: $f_A \propto v_A \propto B_{\varphi}$ for both frequency bands

Outline

- Experiment and diagnostics
- Frequency chirping
- RE distribution function
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality

 RE distribution function measured before chirping observed has a bump

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D₂ bound electrons [1]

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D₂ bound electrons [1]
- Relaxation of RE f(E) during chirping events is directly measured

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D₂ bound electrons [1]
- Relaxation of RE f(E) during chirping events is directly measured

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D₂ bound electrons [1]
- Relaxation of RE f(E) during chirping events is directly measured

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion
 A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019

- RE distribution function measured before chirping observed has a bump
- Bump is a potential source of free energy to drive instabilities
- Formation of the bump can be explained by interplay between RE acceleration by electric field and collisional damping on D₂ bound electrons [1]
- Relaxation of RE f(E) during chirping events is directly measured
- This supports interactions between REs and instabilities

[1] Lvovskiy et al. RE beam dynamics at low plasma density in DIII-D. Submitted to Nucl. Fusion

Outline

- Experiment and diagnostics
- Frequency chirping
- **RE distribution function**
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality

Chirping in low frequency range causes strongest RE loss

- Instabilities are observed in two distinct frequency ranges: 0.1–10 MHz and 30–80 MHz
- They are triggered at low plasma density and decelerating voltage

Chirping in low frequency range causes strongest RE loss

- Instabilities are observed in two distinct frequency ranges: 0.1–10 MHz and 30–80 MHz
- They are triggered at low plasma density and decelerating voltage
- Low freq. chirping (1–3 MHz) causes the strongest magnetic fluctuations ($\Delta \tilde{B}_{\phi}$)

38

Chirping in low frequency range causes strongest RE loss

- Instabilities are observed in two distinct frequency ranges: 0.1–10 MHz and 30–80 MHz
- They are triggered at low plasma density and decelerating voltage
- Low freq. chirping (1–3 MHz) causes the strongest magnetic fluctuations ($\Delta \tilde{B}_{\phi}$)
- Low freq. chirping (1-3 MHz) causes the strongest change of RE loss signal (△HXR)
- Δf changes by 0.3–2.4 MHz on 0.1 ms (local width) and 0.3-1.8 ms (full width) time scales

Outline

- Experiment and diagnostics
- Frequency chirping
- **RE distribution function**
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality

Possible mechanism of instabilities: REs drive Alfvénic waves, which scatter REs and increase RE loss

- Decelerating loop voltage presumably leads to strong nonmonotonic feature (bump) at RE distribution function
- This excites Alfvénic waves
- Alfvénic waves interact with REs, scatter them and increase RE loss
- Fast relaxation of RE distribution function can explain frequency chirping consistent with the holeclump model [1]
- Fast pitch-angle scattering of REs can cause the observed spikes of ECE

[1] Berk, Breizman, Ye. PRL 1992

 Fundamental freq. of observed instabilities lies between 1–10 MHz

[1] Heidbrink PoP 2002

[1] Heidbrink PoP 2002

- Fundamental freq. of observed instabilities lies between 1–10 MHz
- For given plasma parameters: $-f_{ci} \approx 15 \text{ MHz}$ $-f_A \approx 1.5 \text{ MHz}$
- Compressional Alfvén eigenmodes (CAEs) are the most likely candidates for kinetic instabilities in the observed frequency region

[1] Heidbrink PoP 2002

- Fundamental freq. of observed instabilities lies between 1–10 MHz
- For given plasma parameters: $-f_{ci} \approx 15 \text{ MHz}$ $-f_A \approx 1.5 \text{ MHz}$
- Compressional Alfvén eigenmodes (CAEs) are the most likely candidates for kinetic instabilities in the observed frequency region
- Separate loops will be installed to measure toroidal numbers and polarization

See poster by Genevieve Degrandchamp on Thursday for details

Cherenkov resonance is a possible driving mechanism

 Anomalous Doppler and Cherenkov resonances are possible excitation mechanisms

$$\omega = k_{\parallel}V_{\parallel} - \frac{\omega_{ce}}{\gamma} \quad \begin{array}{l} \text{Satisfied at large } k_{\parallel} \\ (k_{\parallel} = 50 - 300 \text{ m}^{-1}) \end{array}$$
$$\omega = k_{\parallel}V_{\parallel} \quad \begin{array}{l} \text{Satisfied at small } k_{\parallel} \\ (k_{\parallel} = 0.1 - 2 \text{ m}^{-1}) \end{array}$$

Cherenkov resonance is a possible driving mechanism

 Anomalous Doppler and Cherenkov resonances are possible excitation mechanisms

$$\omega = k_{\parallel}V_{\parallel} - \frac{\omega_{ce}}{\gamma} \quad \begin{array}{l} \text{Satisfied at large } k_{\parallel} \\ (k_{\parallel} = 50 - 300 \text{ m}^{-1}) \end{array}$$
$$\omega = k_{\parallel}V_{\parallel} \quad \begin{array}{l} \text{Satisfied at small } k_{\parallel} \\ (k_{\parallel} = 0.1 - 2 \text{ m}^{-1}) \end{array}$$

 Assume cold plasma dispersion relation at small k_{II} ≈ k < 5 m⁻¹

$$\omega = k V_A \sqrt{1 + k_{\parallel}^2 c^2 / \omega_{pi}^2}$$

Cherenkov resonance is a possible driving mechanism

Cherenkov resonances at different k_{II}

 Anomalous Doppler and Cherenkov resonances are possible excitation mechanisms

$$\omega = k_{\parallel} V_{\parallel} - \frac{\omega_{ce}}{\gamma} \quad \begin{array}{l} \text{Satisfied at large } k_{\parallel} \\ (k_{\parallel} = 50 - 300 \text{ m}^{-1}) \end{array}$$

$$\omega = k_{\parallel} V_{\parallel} \quad \begin{array}{l} \text{Satisfied at small } k_{\parallel} \\ (k_{\parallel} = 0.1 - 2 \text{ m}^{-1}) \end{array}$$

 Assume cold plasma dispersion relation at small k_{II} ≈ k < 5 m⁻¹

$$\omega = k V_A \sqrt{1 + k_{\parallel}^2 c^2 / \omega_{pi}^2}$$

 Cherenkov resonance is satisfied for experimental conditions

Resonant RE orbits can be used to locate the RE bump

- Plasma equilibrium and RE orbits are calculated for the early stage of chirping instabilities
- Analysis of toroidal (ω_φ) and
 poloidal (ω_θ) transit frequencies provides wave-particle resonances:

$$\Omega_{nm} = n\omega_{\varphi} - m\omega_{\theta} - \omega = 0$$

Resonant RE orbits can be used to locate the RE bump

- Plasma equilibrium and RE orbits are calculated for the early stage of chirping instabilities
- Analysis of toroidal (ω_φ) and
 poloidal (ω_θ) transit frequencies provides wave-particle resonances:

$$\Omega_{nm} = n\omega_{\varphi} - m\omega_{\theta} - \omega = 0$$

 Calculations of RE loss on resonant orbits can be used for bump localization (modelling input is welcome!)

Outline

- Experiment and diagnostics
- Frequency chirping
- **RE distribution function**
- Operating space
- Possible driving mechanism and candidate instability
- RE-driven instabilities at higher collisionality

 Chirping instabilities are accessed during the RE plateau at very low plasma density

Chirping instabilities are accessed during the RE plateau at very low plasma density

- RE-driven instabilities are also detected right after impurity injection – during the current quench, when plasma is dense
 - Most prominent after massive gas injection

- Chirping instabilities are accessed during the RE plateau at very low plasma density
- RE-driven instabilities are also detected right after impurity injection – during the current quench, when plasma is dense
 - Most prominent after massive gas injection
- These instabilities can be responsible for failure of RE beam formation

- Chirping instabilities are accessed during the RE plateau at very low plasma density
- RE-driven instabilities are also detected right after impurity injection – during the current quench, when plasma is dense
 - Most prominent after massive gas injection
- These instabilities can be responsible for failure of RE beam formation
- Great interest for RE control in tokamaks!

RE-driven instabilities observed during formation of postdisruption RE beam sometimes presumably kill it [1]

- Disruptions without formation of RE beam show clear extended fluctuations of magnetic signals during the current quench
- RE loss correlates with MHz magnetic
 fluctuations in the frequency range of 0.1–3 MHz

[1] See much more detail in Lvovskiy et al. PPCF 2018

RE-driven instabilities observed during formation of postdisruption RE beam sometimes presumably kill it [1]

- Disruptions without formation of RE beam show clear extended fluctuations of magnetic signals during the current quench
- RE loss correlates with MHz magnetic
 fluctuations in the frequency range of 0.1–3 MHz
- These magnetic fluctuations appear when RE energy E_{RE} exceeds 2.5–3 MeV

[1] See much more detail in Lvovskiy et al. PPCF 2018

RE-driven instabilities observed during formation of postdisruption RE beam sometimes presumably kill it [1]

- Disruptions without formation of RE beam show clear extended fluctuations of magnetic signals during the current quench
- RE loss correlates with MHz magnetic
 fluctuations in the frequency range of 0.1–3 MHz
- These magnetic fluctuations appear when RE energy E_{RE} exceeds 2.5–3 MeV
- Varying pre-disruption Ip and amount of injected Ar we can switch between cases w/ and w/o RE beam

[1] See much more detail in Lvovskiy et al. PPCF 2018

CAEs can be excited by REs with bump-on-tail f(E) via Cherenkov resonance [1]

Collisional and pitch-angle scattering of REs by argon nuclei can lead to formation of <u>RE</u> <u>distribution function with bump-on-</u> <u>tail</u> [2,3]

Chang Liu et al. In preparation
 Hesslow et al. PRL 2017
 Chang Liu et al. PRL 2018

CAEs can be excited by REs with bump-on-tail f(E) via Cherenkov resonance [1]

- Collisional and pitch-angle scattering of REs by argon nuclei can lead to formation of <u>RE</u> <u>distribution function with bump-on-</u> <u>tail</u> [2,3]
- Quasilinear simulations show excitation of CAEs via Cherenkov resonance

Chang Liu et al. In preparation
 Hesslow et al. PRL 2017
 Chang Liu et al. PRL 2018

CAEs can be excited by REs with bump-on-tail f(E) via Cherenkov resonance [1]

- Collisional and pitch-angle scattering of REs by argon nuclei can lead to formation of <u>RE</u> <u>distribution function with bump-on-</u> <u>tail</u> [2,3]
- Quasilinear simulations show excitation of CAEs via Cherenkov resonance
- Multiple modes can lead to stochastic motion of REs towards the wall
- This increases RE radial transport

Chang Liu et al. In preparation
 Hesslow et al. PRL 2017
 Chang Liu et al. PRL 2018

RE-driven frequency chirping instabilities are observed for the first time in a tokamak

- Instabilities are accessed in low density RE plateau under applied decelerating loop voltage
- Frequency chirps by 0.3–2.4 MHz on timescale of 1 ms
- There are two frequency regions: 1–10 MHz and 30–80 MHz
 - Low-frequency instabilities correlate with increased RE loss
- Modification of RE energy distribution function is measured during chirping in low-frequency region consistent with hole-clump model
- Candidate modes are CAEs driven by non-monotonic RE distribution function via Cherenkov resonance
- Similar frequency instabilities correlated with intermittent RE loss are also observed at high plasma collisionality – during current quench
 - They are presumably responsible for non-sustainable RE beam
 - Modelling shows excitation of CAEs and increased RE radial transport

(Highlight slide) Rapid frequency chirping instabilities driven by runaway electrons are observed for the first time in a tokamak

- Instabilities are accessed in low density post-disruption runaway plasma under applied decelerating voltage in DIII-D
- Frequency chirps by 0.3–2.4 MHz on timescale of 1 ms
- There are two distinct frequency regions: 1–10 MHz and 30–80 MHz
 - Low-frequency instabilities correlate with intermittent RE loss
- Modification of RE energy distribution function is measured during chirping in low-frequency region consistent with hole-clump model

Magnetic spectrogram of frequency chirping instabilities driven by runaway electrons in DIII-D

Lvovskiy et al. Observation of rapid frequency chirping instabilities driven by runaway electrons in a tokamak. Submitted to Nucl. Fusion

63

BONUS SLIDES

Approximate phase space sensitivity of RE diagnostics

Paz-Soldan et al. PoP 2018

A. Lvovskiy/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019

65

Backup: RE spectrum is reconstructed from HXR spectrum using onion-peel method

- Onion peel method from high energy down can be used to go from HXR to electron spectrum
 - Zero pitch angle and spatial homogeneity are assumed

HXR and RE spectra in the experiment

Backup: DIII-D gamma ray imager (GRI) provides 2D view of RE bremsstrahlung emission

- GRI is a pinhole camera
- Its array consists of gamma scintillator detectors (up to 123 places)
- Body and collimator block are made of lead (≈ 190 kg)

[Pace et al. RSI 2016]

A. Lvovskiy/Frequency Chirping Instabilities Driven by DUN TOROIdal cross-section

Backup: Bremsstrahlung spectra can be found using pulse height analysis. Example: QRE shot

- Time traces are comprised of pulses from distinct gamma particles
- Gamma particles are analyzed via pulse height analysis (PHA)
- Bremsstrahlung spectrum hardens in the course of time

[Cooper et al. RSI 2016]

Backup: Measurements during the RE plateau regime are challenging – upgrade with fast gamma detectors

- Gamma flux due to bremsstrahlung emission is higher by 10³–10⁴ in RE plateau regime compared to QRE
- BGO detectors are usually saturated after the disruption
- New LYSO+MPPC detectors are capable to measure during the post-disruption stage

Collaboration with U. Milano-Bicocca

Response of gamma detectors

A. Lvovskiy/Frequency Chirping Instabilities Driven by to/@Esingleggamma pulse

Backup: Frequency dependence on n_e is stronger than Alfvénic

- Frequency decreases as n_e^{-1} while typical Alfvénic dependence is $n_e^{-1/2}$
- Possibly explained by plasma non-uniformity during the argon purge

Backup: More energetic RE distribution leads to no RE beam

- Cases without RE beam correlate
 with more energetic RE distribution
- Increased argon quantity reduces the number of high-energy REs and correlates with successful RE beam formation
- Integrated power of MHz frequency magnetic signals increases with increase of max E_{RE}
- Increased pre-disruption plasma current increases the maximum energy of REs

LVOVSKIY/Frequency Chirping Instabilities Driven by REs/IAEA TM EP/2019

Backup: Possible mechanism of suppression of RE beam formation with two actuators

