

Efficient generation of energetic D ions with the 3-ion ICRH+NBI synergetic scheme in H-D plasmas on JET-ILW

Yevgen Kazakov et al. on behalf of JET Contributors*

16th IAEA Technical Meeting on Energetic Particles, Shizuoka City, Japan (03-06 September 2019)

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

* See the author list of E. Joffrin et al., Nucl. Fusion **59**, 112021 (2019); https://doi.org/10.1088/1741-4326/ab2276

Ye.O. Kazakov¹, M. Nocente^{2,3}, K. Kirov⁴, M.J. Mantsinen^{5,6}, J. Ongena¹, Ž. Štancar⁷, J. Varje⁸, H. Weisen⁹, Y. Baranov⁴, T. Craciunescu¹⁰, M. Dreval¹¹, R. Dumont¹², J. Eriksson¹³, J. Garcia¹², L. Giacomelli³, V. Kiptily⁴, L. Meneses¹⁴, M.F.F. Nave¹⁴, M. Salewski¹⁵, S. Sharapov⁴, and JET Contributors

¹ Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium ² Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy

³ Instituto di Fisica del Plasma, CNR, Milan, Italy

⁴ CCFE, Culham Science Centre, Abingdon, UK

⁵ Barcelona Supercomputing Center (BSC), Barcelona, Spain

⁶ ICREA, Barcelona, Spain

⁷ Jožef Stefan Institute, Ljubljana, Slovenia

⁸ Aalto University, Aalto, Finland

⁹ EPFL, Swiss Plasma Center (SPC), Lausanne, Switzerland

¹⁰ National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania

¹¹ NSC "Kharkov Institute of Physics and Technology", Institute of Plasma Physics, Kharkiv, Ukraine

¹² CEA, IRFM, Saint-Paul-lez-Durance, France

¹³ Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden

¹⁴ IST, Universidade de Lisboa, Lisbon, Portugal

¹⁵ Technical University of Denmark, Kgs. Lyngby, Denmark

Introduction: '3-ion' ICRF schemes

Target plasma: a mix with two (or more) ion species with different ω_{ci}

 \rightarrow |*E*₊| wave field strongly enhanced in the vicinity of mode conversion layer(s)

Strong wave damping can occur in this region by ions that fulfill the resonance condition $\omega \approx \omega_{ci} + k_{||}v_{||}$

Resonant ions: small number of ions, which can be either

- minority ions with (Z/A)₂ < (Z/A)₃ < (Z/A)₁
 → e.g., ³He ions in H-D plasmas: V. Kiptily, O-19, this conf.
- minority ions with large v_{II} (NBI ions or fusion products)
 - \rightarrow e.g., D-NBI ions in H-D or D-³He, T-NBI in D-T plasmas: *this talk*

Demonstrated as an efficient plasma heating technique on Alcator C-Mod, AUG and JET

Y. Kazakov et al., Nature Physics (2017) J. Ongena et al., EPJ Web Conf. (2017) M. Mantsinen et al., EPS-2019 (2019)

JET pulse #91256, H-D mixed plasma, 2.9T/2MA, L-mode ($R_0 \approx 3m$, $a \approx 1m$) J. Ongena et al., EPJ Web. Conf. (2017)

- ICRH: *f*_{ICRF} = 25MHz (dipole), 1.3-2.5MW
- NBI: *E*_D = 100keV (tang.), 3.5-4.9MW
- Plasma composition, @11s: $n_{\rm H}/n_{\rm e} \approx 86\%$, $n_{\rm D}/n_{\rm e} \approx 8\%$, $n_{\rm 9Be}/n_{\rm e} \approx 0.5\%$, $n_{\rm NBI}/n_{\rm e} \approx 3-4\%$ (resonant minority)

Neutron rate, sawtooth period, gamma reactions, MHD activity: strongly enhanced by ICRH, **depending on** P_{ICRF} / P_{NBI}

Optimal values for P_{ICRF} / P_{NBI} are different for D-D, D-³He and D-T fusion (reflecting the energy dependence of fusion cross-sections)

- 1) Using mixed plasmas: enhanced RF polarization
 - \rightarrow Strong E_+ in the vicinity of the MC layer
 - \rightarrow Strong spatial localization of RF heating

- 2) Using beam ions as a 'third' species
 - → Resonate at the MC layer through their Doppler-shifted term

3-ion ICRH+NBI scheme vs. Doppler-shifted ICRH+NBI scheme

6

Optimal fast-ion energies are different for D-D, D-³He and D-T fusion

- 3-ion ICRH+NBI schemes: possibility to tailor fast-ion energies
 - $\rightarrow P_{\text{ICRF}} / P_{\text{NBI}}$ determines RF power per resonant ion; confirmed by PION modeling [M. Mantsinen et al., EPS-2019]
 - \rightarrow Additional actuators: $n_{\rm e}$, location of RF power deposition, ...
- Lower fast-ion energies beneficial for D-T plasmas
 - \rightarrow Lower P_{ICRF} / P_{NBI} , higher n_{e0} , moving MC layer off-axis, ...

Example of controlling fast-ion energies and neutron rate with 3-ion ICRH+NBI schemes

#94700 (left): very energetic D ions (MeV-range)

#94703 (right): significantly less energetic D ions

8

- Examples from recent 3-ion studies in D-³He plasmas at JET, D-(D_{NBI})-³He scheme
- Lower fast-ion energies (~100-200keV) beneficial for D-T plasmas

Summary of fast-ion observations, confirming the presence of energetic D ions

20

 $D + D \rightarrow ^{3}He (0.82MeV) + n (2.45MeV)$

Neutron spectrum in #91256

Minimum E_D required to give rise to a given time-of-flight in TOFOR [J. Eriksson et al., PPCF (2018)]

• TOFOR (time-of-flight neutron spectrometer):

neutrons with $t_{\text{TOF}} \approx 47-50$ measured \rightarrow

presence of high-energy D ions with energies up to ~1.5MeV

TRANSP fast-ion distribution function and **TRANSP-TOFOR** comparison

- Left: computed TRANSP velocity distribution function in the core [K. Kirov et al., 23rd RF Topical Conference (2019)]
 - \rightarrow acceleration of D ions up to energies ~1.5MeV confirmed
 - → high-energy tail, $E_D \ge 600 \text{keV}$: $T_{eff} \approx 140 \text{keV}$
- Right: good agreement between measured TOFOR and TRANSP-TOFOR (forward modeling) neutron spectrum

Neutral particle analyzer (NPA) measurements

- NPA measures fast D with energies up to ~1MeV
- NPA tail part (E_D > 0.5MeV) matches a Maxwellian with T_{eff}(D) = 180keV
 cf. T_{eff}(TRANSP) = 140keV

High-energy D ions (> 0.5MeV): gamma-ray spectroscopy

Possibility to tailor fast-ion energies and optimize fusion rate with PICRF / PINBI

Y. Kazakov et al. | 16th IAEA TM EP, Shizuoka City, Japan | 03-06 September 2019

- JET neutron cameras: 19 lines of sight (10 horizontal and 9 vertical)
 → visualize the spatial localization of fast-ion population
- Strong localization of neutron emission in the plasma core (channels #4, #5, #14, #15)

Reconstructed neutron emission profile and TORIC-computed location of the MC layer

- RF power absorption and fast-ion generation are strongly localized at the MC layer
- The high-efficiency of the 3-ion ICRH+NBI schemes is due to the **superposition of two effects**
 - i) enhanced RF field polarization;
 - ii) Doppler-shifted absorption for beam ions

Radial localization of MHD modes

Core interferometer: AE modes at $f \approx 100-150$ kHz and $f \approx 300-360$ kHz

Reflectrometer:
 AEs are core-localized, *R* < 3.2m
 (also confirmed by SXR)

 Consistent results between neutron camera data, MHD mode analysis and ICRH modeling

Efficient generation of energetic passing D ions with 3-ion ICRH+NBI scheme

Several contributing effects:

- Resonant NBI ions (passing) start with rather large $E_{\parallel} \approx 40 \text{keV}$
- MC layer is a combined spatial and velocity space filter for resonant ions
 - \rightarrow resonant ions should pass through the MC layer and fulfill $\omega = \omega_{cD} + k_{||}v_{||}$
 - \rightarrow low- λ orbits do not fulfill the resonance condition
- Very core-localized RF power deposition: non-standard orbit topology
 - \rightarrow modified trapped/passing boundary and stagnation orbits
- Rather broad k_{\parallel} -spectrum from ICRH and quasi-linear evolution of ICRH-heated ions ($\delta E_{\perp}; \delta E_{\parallel}$) [1] L.-G. Eriksson et al., PoP (1999); [2] T. Hellsten et al., NF (2004)

Y. Kazakov et al. | 16th IAEA TM EP, Shizuoka City, Japan | 03-06 September 2019

Outlook for future studies

-

AT L

.

1

-

-

D- ³ He plasmas	P _{tot}	<i>R</i> _{nt} (10 ¹⁵ n/s)	<i>W</i> _p (MJ)
#94701 (3-ion ICRH)	14.2MW	7.8	3.7
#94704 (NBI-only; @8.5-9.5s)	14.3MW	1.0	2.6

ITER:

- Dominant electron heating
- Alpha particles can significantly reduce ITG turbulence and heat transport [J. Garcia et al., Phys. Plasmas (2018)]

3-ion ICRH schemes on JET:

plasmas with core electron heating, including a small population of MeV-range ions

- Mimick the conditions representative for ITER plasmas
- Contribute to the understanding the impact of fast ions on plasma transport, in particular, the impact of alphas in ITER

- The technique offers a flexibility with electron / bulk ion heating
- Bulk ion heating schemes
 - → applicable for D-T \approx 50%-50%
 - \rightarrow use heavy species (⁹Be, ²²Ne, Ar impurities) and/or off-axis T-NBI heating
 - $\rightarrow\,$ Ti-heating with reduced fast-ion generation
 - $\rightarrow\,$ contribute to the experiment to demonstrate alpha particle heating in DTE2
- 3-ion scheme with T-NBI as a minority
 - → D-T with X[D] ≈ 70-80%
 - → accelerate T-NBI ions to the optimal energies ~150-350keV
 - → fast-ion energy actuators: $P_{\text{ICRF}} / P_{\text{NBI}}$, D:T ratio, n_{e0} , B_0 , ...

Summary and conclusions

- 3-ion D-(D_{NBI})-H and D-(D_{NBI})-³He schemes on JET
- → Efficient controlled acceleration of D-NBI ions with **ICRH in mixed plasmas** demonstrated Actuators: $P_{\text{ICRF}} / P_{\text{NBI}}$, n_{e0} , location of the MC layer, ...
- → Good example demonstrating the strength and variety of fast-ion diagnostics at JET-ILW:
 neutron cameras, TOFOR, NPA, γ-ray spectroscopy, MHD analysis, ...
- → Numerical ICRH modeling (PION, TRANSP) is in good agreement with fast-ion measurements (#91256)
 [M. Mantsinen et al., EPS-2019 (2019);

K. Kirov et al., 23rd RF Topical Conf. (2019)]

- → This scheme is capable to generate fast passing ions: beneficial for plasma heating in small tokamaks and stellarators
- 3-ion ICRH schemes are relevant for future JET and ITER operations

[Y. Kazakov et al., EPS-2018 (2018)]

Backup slides

- 3 components for the 3-ion D-(D_{NBI})-³He ICRH scheme

 → thermal D and ³He (~20-25%)
 → fast D-NBI ions as a minority
- Efficient plasma heating and fast-ion generation
- Fast D ions with energies up to ~3MeV generated
- 5 different MeV-range populations in the plasma, including 3.6MeV alpha particles
 → H, D, T, ³He and ⁴He

Energetic species	Energy	Fast-ion source	
Н	3.02MeV, 14.7MeV	Fusion product (D-D, D- ³ He)	
D	up to ~3MeV	3-ion ICRH+NBI scheme	
Т	1.01MeV	Fusion product (D-D)	
³ He	0.82MeV	Fusion product (D-D)	
4He	3.6MeV	Fusion product (D- ³ He)	

D + ³He \rightarrow ⁴He (3.6MeV) + p (14.7MeV) D + D \rightarrow T (1.01MeV) + p (3.02MeV) ³He (0.82MeV) + n (2.45MeV)

- L-mode plasmas (2.9T/2MA), $n_{\rm e}(0) \approx 4 \times 10^{19} \,\mathrm{m}^{-3}$, H-D $\approx 85\%$:15%
- Centrally peaked T_e profiles

NBI-only: $T_e(0) = 2.4 \text{keV}$ NBI+ICRH: $T_e(0) = 4.0 \text{keV}$

Example of controlling fast-ion energies and neutron rate with 3-ion ICRH+NBI schemes

Y. Kazakov et al. | 16th IAEA TM EP, Shizuoka City, Japan | 03-06 September 2019

ASCOT orbits

Orbits of energetic D ions vs. λ

 λ = 0.13: stagnation orbit

 $\lambda = v_{\parallel}/v, \quad \mu = m v_{\perp}^2/(2B), \quad E = m v^2/2$ Normalized magnetic moment: $\Lambda = \mu B_0/E$ Trajectories in phase space during ICRH (cf., Eq. (8) in [2]): $\delta \Lambda/\delta E = (\Lambda_{\rm res} - \Lambda)/E$ $\Lambda_{\rm res} = \frac{n \omega_{ci}(0)}{\omega}$ Here, $\omega_{ci}(0)$ is the cyclotron frequency at the magnetic axis

 $\begin{array}{ll} \underline{\text{Conditions for JET pulse \#91256}:} & E_{\mathrm{NBI}} = 100 \mathrm{keV}, \lambda = v_{\parallel}/v = 0.62 \text{, originally passing NBI ions} \\ \Lambda_{\mathrm{res}} = \frac{n \omega_{ci}(0)}{\omega} \simeq \frac{1}{1 + X[\mathrm{D}]} \approx 0.87 & \begin{array}{ll} \log_{10}(\mathrm{f_{bD}(E,\xi)}), \mathrm{R=301, Z=31}\\ & \log_{$

		$\Lambda ightarrow \Lambda_{ m res}$		$\delta E_\perp \gg \delta E_\parallel$	
Ε	$\lambda = v_{ }/v$	٨	۸ _{res}	$oldsymbol{E}_{\parallel}$	E_{\perp}
100keV	0.62	0.63	0.87	40keV	60keV
500keV	0.44	0.82	0.87	100keV	400keV
1MeV	0.41	0.85	0.87	170keV	830keV

[1] L.-G. Eriksson et al., *Phys. Plasmas* 6, 513 (1999)

[2] T. Hellsten, T. Johnson et al., *Nucl. Fusion* 44, 892-908 (2004)

[3] Y. Kolesnichenko et al., *Nucl. Fusion* 57, 066004 (2017)

[4] C. Hellesen, M. Mantsinen et al., Nucl. Fusion 57, 056021 (2018)

