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Background

* Understanding of impurity-ion transport in the core
plasma of fusion reactor is an important issue.

* Numerical study has shown that electrostatic potential
varying on flux surface (~0.01T;) has significant effect on
neoclassical flux of high-Z impurity ions in stellarators[1].

* The ratio between magnetic mirror force to parallel
electrostatic force depends on the charge number Z.

Parallel electrostatic force -ZeV,® o« Z
Mirror force -uV, B « Kkinetic energy

=»High-Z impurity ions are more sensitive to V,®.



How fast ions generate @ varying on flux surface
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Poloidal electrostatic field by perpendicular neutral beam
injection (NBI) [2]

Fast-ion density is generally not uniform on flux surface.
Charge-neutrality condition =» parallel gradients in n;

Parallel pressure gradients are balanced by E;=-¢V®



Objectives

* Previously, we performed numerical estimation of ®
generated by fast ions of perpendicular neutral beam
injection (NBI): ®,, in tokamak and helical plasmas|3,4].

* In order to estimate @, in the condition closer to plasma
experiments in real devices, we study two additional cases:

— JT60-SA[5]-like tokamak

— Tangential NBI in the Large Helical Device[6]
configuration

* Neoclassical diffusion coefficient of tungsten ion, W#°*, in
the core plasma of JT60-SA-like tokamak is studied using
Monte Carlo method taking into account @,



Z[m]

JT60-SA-like tokamak configuration

MHD equilibrium is calculated using VMEC][7] in fixed-
boundary mode (up-down symmetry is assumed).

3 obtained equilibrium Boundary-shape parameters
Major rad. 2.96 m
2 -
Minor rad. 1.17 m
1 Ellipticity 1.86
Triangularity 0.4
O L
Parameters of assumed equilibrium
-1 B at axis 2.4T
Toroidal current| ~5 MA
2 Volume-averaged
beta (total) 3%
-3 ' ' ' safety factor 1.02-3.63




Assumed plasma profiles for JT60-SA-like case
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Note: MHD equilibrium is fixed to the one in the previous slide for both profiles.



Assumed NBI systems for JT60-SA case

* NBI systems of JT60-SA shown in [4] are  Summary of assumed NBI systems

mocked using the NBl module, FIT3D[8]. |beam Epeam | Pus
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GNET code[9]

* Solves the drift-kinetic equation for fast ions using Monte
Carlo method in five-dimensional phase space:

ff -t ('D” + vD) fo +v- vaf C(ff) + Lpartlde(ff) + Sbeam

at

f; =ff(r,z9,Z,v| |1V¢) : 5-D fast ion distribution function
v, : parallel velocity, v, : drift velocity,
C : linear Coulomb collision operator (pitch-angle and eng.)

[particle - narticle loss term (charge exchange and orbit losses)
S,eam - Particle source term by NBI (from FIT3D)



Calculation model for @,

Fast-ion density Boltzmann relations on flux surface
~ o
ne = (ng)(Y) + g, 6, ) ne = (ng)exp —=
e e/€XP T
e
Charge-neutrality conditions n = (n)ex (_ CDNB,)
n,—n;—Zn, —neg=0 i = Wh7eP T;
O
(ne) = (ny) — Z(ng) — (ng) = 0 ny = (ngexp (-2 =2
\_' : 1
((ne) () o (ng)\ T
Dnpr = nf( Te + Tl + ZZT—Z () :flux-surface average
e i Z

* This model for @, does not describe the radial electrostatic
field determined by cross-field radial momentum balance.



Simulation results for low-density case
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* Trapped ions of perp. NBl generate @ (6~0)>D,;(6~1),
much higher than @, of tangential NBIs.

* Tangential NBs generate @, higher at 6~0 in most of

plasma volume regardless of direction of injection.
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@, by Tangential injections
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* In the assumed configuration, the pitch of field line is lower
in the inner side of the torus: =»passing ions spend longer

time =2 higher fast ion density
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Monte Carlo evaluation of diffusion coefficient

* N test particles are randomly distributed on the target
surface and followed to evaluate two statistical quantities:

N
=2y o %;m — (2

n=1
r,: radial position of n-th test particle

e Diffusion coefficient and radial velocity are calculated as

2nd dr
1dC v (r)

D=5—% © o dt

* We assume tungsten impurity ion with A=184, Z=45 (W%*)
as the test particles.



Diffusion coefficient of W** (E =0)
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* Inlow density case, @y, is an order higher than high density case.

* Diffusion coefficient is reduced by ®,;, except in the region r/a<0.5
of low density case (®yg > ~25V).

 Moderate poloidal electric field decreases trapped particle fraction
g,, while strong one causes electrostatic trapping [10] of W%,
which starts to compete with decrease in &,.



Diffusion coefficient [m>/s]
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In this study, as a rough
estimation, we assumed a
radially-constant electric field,
E.~ T./a~ *6kV/m and +3kV/m,
which is superimposed onto
VO, in Monte Carlo calculation.
E. does not affect D (w/ exception
of r/a=0.75 of high density case)
because of axi-symmetry, but it
does on V.

D and V are reduced/enhanced
simultaneously.

Enhancement of the inward
transport or accumulation of
W4>* may be possible in the
region of r/a<0.5 for low density
case.



Helical plasma: Large Helical Device

LHD is a heliotron-type stellarator device[6] with R;=3.9m.
Configuration: R_=3.60 m, a ~ 60cm

Field strength at axis : 2.75T
Energy of tangential NBl :180keV (5MW)

perp. NBI : 40keV  (5MW) (done previously)
plasma cross section density and temperature fast-ion birth points
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Simulation results for tangential NBI (5MW) in LHD
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Horizontal shift of orbit surface of
passing particles
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mod-B contour on the flux surface
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D\ by tangential NBI is found to be
dominated by a toroidicity mode (cos8)
with additional modes corresponding to
the mod-B structure.

A clear dependence on injection
direction (cf. JT60-SA-like case) due to
horizontal shift of orbit surface and

smaller poloidal variation of pitch of
field line.



Summary

Electrostatic potentials ® g generated by NBI fast ions in
JT60-SA-like tokamak LHD are evaluated using 5-D
simulations of fast ions with the GNET code.

In JT60-SA case, 16MW perpendicular NBl dominated @,
and @, by tangential NBI did not show dependence on
injection direction in most of plasma volume.

Monte Carlo calculation showed that @, has significant
effect on diffusion coefficient and radial velocity of W#4>*:
enhancement in the plasma core for the lower-density case.

In LHD, the tangential NBI generated @, dominated by
toroidicity mode, depending on beam direction. This can be
explained by the horizontal shift of drift surface.



Future works

Comparison of @, with electrostatic potential
generated by other mechanism (ex. NB driven plasma
rotation[2])

Experimental validation of @, using heavy-ion beam
probe measurement of LHD[11].

Calculation of W#* transport in rotating plasmas
Evaluation of @, with kinetic model in tokamak and
helical systems
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