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• Equilibrium with flow in fusion plasmas
- In improved confinement modes of magnetically confined plasmas, 
equilibrium toroidal and poloidal flows play important roles like the 
suppression of instability and turbulent transport. 

• Pressure anisotropy in plasma flow
- Plasma flows driven by neutral beam injection indicate strong pressure 
anisotropy. 

• Small scale effects in MHD equilibria
- Equilibrium models with small scale effects may be suitable for modeling  
steady states of improved confinement modes that have steep plasma 
profiles and for initial states of multi-scale simulation.
- Two-fluid equilibria with flow and pressure anisotropy was studied for the 
case of cold ions [Ito, Ramos and Nakajima, PoP 14, 062502 (2007)].
- However, finite ion Larmor radius effects may be relevant for high-
temperature plasmas in magnetic confinement fusion devices.
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Equilibrium with flow in high-beta reduced MHD models



• Equilibrium with flow in high-beta reduced MHD models
- Fluid moments in collisionless, magnetized plasmas are simplified
- Grad-Shafranov type equilibrium equations can be easily derived even in 
the presence of flow and several small scale effects.
- Basic physics of flow and non-ideal effects can be investigated.
- Reduced equilibrium models
 Two-fluid MHD, FLR, poloidal Alfvenic flow 

[Ito, Ramos and Nakajima, PFR 3, 034 (2008)]
 MHD, poloidal sonic flow 

[Ito, Ramos and Nakajima, PFR 3, 034 (2008)]
[Ito and Nakajima, PPCF 51, 035007 (2009)] – Analytic solution

 Two-fluid MHD, FLR, poloidal sonic flow, isotropic pressure
[Ito and Nakajima, AIP Conf. Proc. 1069, 121 (2008)]

 Two-fluid MHD, FLR, poloidal sonic flow, anisotropic pressure 
[Ito and Nakajima, NF 51, 123006 (2011)]
[Ito and Nakajima, JPSJ 82, 064502 (2013)] – Analytic solution in the 
MHD limit
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- Two-fluid equilibrium equations with ion FLR

• Equilibrium equations in extended-MHD 
- Fluid-moment equations for magnetized collisionless plasmas 
[Ramos, PoP 12 052102, 112301 (2005)]

( , ) (0,0)
(1,0)
(1,1)

H iλ λ = ⇒

= ⇒
= ⇒

Single - fluid MHD
Two - fluid (Hall) MHD
FLR two - fluid MHD

, /v B⊥= + ≡v b v b B


2 gv
i pεΠ ∼ FLR effect (λi): ion gyroviscosity

 Two-fluid effects (λH): Hall current and electron pressure

- Electron inertia is neglected: 0em ≈
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- Equations for anisotropic ion and electron pressures 
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- Parallel heat flux:
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adiabatic ion pressure
ion pressure with parallel heat flux
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- Parallel heat flux equations for ions
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- Parallel heat flux equations for mass-less electrons, 0em ≈

i iB iT
 q q q

  

 Kinetic effects in the fourth-order moments are neglected

-Fluid closure condition:
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- Ion gyroviscous force for collisionless magnetized plasmas
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• Compressible high-β tokamak and slow dynamics orderings
- Large aspect ratio and high-β tokamak

- Weak compressibility
The fast magnetosonic wave is eliminated. 

- Flow velocity for slow dynamics

• Strong pressure anisotropy:
• Parallel heat flux can not be neglected:
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• Poloidal sound velocity

• Transition between sub- and super-poloidal-sonic flow appears.
• Higher-order terms should be taken into account.
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- Lowest order quantities are functions of 1ψ
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Shift from magnetic surfaces

- Higher-order quantities are determined by 1 2  ψ ψand

[Ito and Nakajima, NF 51, 123006 (2011)]

Equilibrium flow comparable to poloidal sound velocity

• Reduced equilibrium equations

- Asymptotic expansions:

- Axisymmetric equilibria:
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- Radial force balance yields the Grad-Shafranov (GS) type equations
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Pressure anisotropy

- GS equation for         includes the effect of flow, FLR and pressure anisotropy:
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Analytic solution for single-fluid MHD

[A. Ito and N. Nakajima, Plasma Phys. Control. Fusion 51 035007 (2009), 61
029501 (2019)]

• Reduced GS equations for MHD equilibria can be solved 
analytically for linear profiles
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-Sub-sonic poloidal flow - Super-sonic poloidal flow

Black: pressure isosurfaces
Gray: Magnetic flux surfaces

- Magnetic surfaces are modified due to flow
- The pressure maximum is shifted outwards for sub-sonic flow 

and inwards for super-sonic flow 



Analytic solution for single-fluid equilibrium with flow 
and pressure anisotropy:

[A. Ito and N. Nakajima, J. Phys. Soc. Jpn 82 064502 (2013), 
88 028001 (2019) ]

• Anisotropic ion pressure in the presence of the parallel heat flux,

 Singularity
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• Profiles of free functions:

Numerical solution for the FLR two-fluid model
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• Dependence of higher-order terms on   forEcV

 6 singular points (3 sound waves)
 Symmetric

 6 singular points (3 sound waves)
 Asymmetric due to ion diamag. flow

- Singular points appear due to the ordering
- Small scale effects on regular solutions for single-fluid MHD are studied.
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1 2(1, ) 0, (1, ) 0.ψ θ ψ θ= =

• Boundary conditions: 
 Circular cross-section,
 Up-down symmetry

• Finite element method
 GS Eq. for ψ1: nonlinear, solved iteratively
 GS Eq. for ψ2: linear, solved by substituting ψ1

• Numerical solutions 
 Finite element method with N2 meshes
 Linear profile: benchmarked with analytic solution

2( 1)
2 1 11

1 2( 1)
11

[ ( , )] ,
N N

i i ii
err N N

ii

rψ ψ θ
δ

ψ

+
=

+
=

−∑=
∑

1 2,i iψ ψ

1 2( , ), ( , )i i i ir rψ θ ψ θ
: Numerical solutions at each grid points

: Analytic solutions at each grid points

The analytic solution enables the benchmark of 
numerical solution.

2( 1)
2 2 21

2 2( 1)
11

[ ( , )] ,
N N

i i ii
err N N

ii

rψ ψ θ
δ

ψ

+
=

+
=

−∑=
∑



( ) ( )Rψ ϕ∇ ×∇Ψ ⋅ ∇

Isosurfaces of ion stream function shift from magnetic surfaces due to 
two-fluid effect, but it also depends on FLR effects.
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 Shift of isosurfaces of ion stream function from magnetic surfaces:
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 Shift of pressure isosurfaces occurs due to flow or pressure anisotropy
even in the single-fluid model



FLR two-fluid,Single-fluid, FLR two-fluid,

 Effect of pressure anisotropy

- Electron stream function
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Pressure anisotropy

Shift of the isosurfaces of the electron stream function occur in the
presence of both two-fluid effects and pressure anisotropy



x x

ψ p Ψ

Red: same direction
Blue: opposite direction

- Solutions depend on the sign of E×B flow compared to that of ion 
diamagnetic flow

x

 Pressure profiles in the midplane
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Anisotropic pressures for ions and 
electrons are self-consistently obtained.



Reduced MHD equations for stability in the presence of 
poloidal flow

• Reduced-MHD equations with
- must include equilibria with poloidal-sonic flow when

- require the energy conservation up to
- are needed for stability of toroidal equilibria with strong 
poloidal flow

• Reduced MHD equations with higher order terms
- We modify the reduced equations found by Strauss [NF 23, 649 
(1983)] to apply  for 
high-beta plasmas with dynamics of slow magnetosonic wave 

and non-constant density. 
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• By taking asymptotic expansions for axisymmetric equilibria, 
reduced equilibrium equations are reproduced

• Shear Alfven and slow magnetosonic waves are found in the 
homogeneous, cylindrical limit
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[A. Ito and N. Nakajima, PPCF 61 105006 (2019)]
• Flux coordinates obtained from analytic MHD equilibrium with 

flow

Magnetic flux coordinates

( Red: ψ1+εψ2, Blue: ψ1)

Flux coordinates (ξ,Θ) for different poloidal flow velocities

- Flux coordinates are modified due to poloidal flow
- Flux coordinates will be used for stability analysis



• Reduced equations for two-fluid equilibria with flow
- Two-fluid equilibria with toroidal and poloidal flow, ion FLR,

pressure anisotropy and parallel heat flux have been derived
from the fluid moment equations for collisionless magnetized
plasmas.

• Analytic solution for single-fluid equilibria
- The solution indicates the modification of the magnetic flux

and the departure of the pressure surfaces from the magnetic
surfaces due to flow.

- Complicated characteristics in the region around the poloidal
sound velocity due to pressure anisotropy and the parallel heat
flux have been found.

Summary



• Numerical solution for two-fluid equilibria with ion FLR
- The isosurfaces of the magnetic flux, the pressure and the

ion stream function do not coincide with each other.
- Pressure anisotropy associated with parallel heat flux has

been included in the numerical code.
- Solutions depend on the direction of E×B flow compared

to that of ion diamagnetic flow.
- Reduced MHD equations

– We have derived time-dependent reduced MHD equations 
consistent with the high-beta tokamak equilibrium with 
strong poloidal flow.

• Flux coordinates in equilibrium with flow
– We have obtained modified flux coordinates by adding

second order magnetic flux in the presence of poloidal flow.
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