Effects of 3D Magnetic Field on Fast lon Loss and Alfvénic Activities in KSTAR
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Introduction

« Contirolled 3D magnetic field is one of important conirol knobs for plasma transport and stability in
tokamaks - ELMs, rotation, turbulence, divertor heat load

* Transport and confinement of energetic particles impact on fusion performance via interacting
with MHD instabilities, fluctuations, and 3D magnetic field

- This presentation reports analysis of (1) Enhanced Fast lon Loss & (2) Excitation of Alfvénic
Eigenmode due to application of 3D magnetic field in KSTAR
(1) Analysis with full orbit following simulation + ideal plasma response
* Modification of phase-space fast ion distribution = Threshold behavior of fast ion prompt loss
(2) Reduction of plasma rotation > Modification of Alfvén continuum
- Change in fast ion confinement due to excitation of Alfvén Eigenmodes

Enhanced Fast lon Loss Measured by FILD during RMP Application
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Perturbed Equilibrium lllustrates Importance of Plasma Response
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Full Orbit Simulation Reproduces Threshold Behavior of Fast lon Loss
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Lost Particle Pitch is Correlated to Threshold RMP Amplitude

Phase Space Distribution of Fast lons - Without RMP, most losses are from high pitch
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FILD Measurements Show Broadening of Pitch Distribution
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Band-like structure in the pitch angle at the post-threshold & saturation phase, near the trapped
and/or frapped-passing boundary

Threshold Behavior is Mainly Caused by Lower Pitch Particles

Fast lon Loss Fraction v.s. RMP Amplitude, Depending on Pitch Trace of Fast lon Loss Fraction, Depending on Pitch
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» Clear threshold behavior in low & intermediate pitch particles with increase of RMP amplitude
- High pitch particles escape very fast in the early phase

- Particles converted to intermediate & low pitch trapped orbits escape after long transits
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Non-Axisymmetric Magnetic Field Coils in KSTAR

* In-vessel conirol coils (IVCC)
in KSTAR provide various
static or rotating non-
axisymmetric magnetic fields
of n=1 & n=2

e Demonstrate ELM suppression,
toroidal rotation braking,
divertor heat flux splitting, etc.

e Active use for control of fast
ion fransport & confinement

KSTAR In-Vessel Control Coils (IVCC):
3-rows (Upper / Middle / Lower)

Magnetic Braking Experiment Using n=1 3D Magnetic Field
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Perturbed 3D Field Spectrum - Effect of Plasma Response & Pedestal
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* Enhanced shielding due to inclusion of pedestal siructure, moderating resonant response
- More consistent to observation

Excitation of TAE after Significant Braking of Toroidal Rotation
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« Significant reduction of fast ion confinement, interacting with excited TAE during 3D field application
- Decrease of NB confinement & power deposition — Modification of safety factor profile

Summary

- Effects of 3D magnetic field on fast ion prompt loss & Alfvénic activities in KSTAR are analyzed

* Full orbit + ideal plasma response simulations reproduce enhanced fast ion loss & threshold
behavior of fast ion loss driven by 3D magnetic field in KSTAR

- Find redistribution of fast ion phase-space distribution is responsible for the threshold behavior

- Toroidal rotation braking by 3D magnetic field can excite Alfvén Eigenmodes
- Modify Alfvén continuum by significant reduction of toroidal rotation & change of g-profile
- Degradation of fast ion power deposition and confinement



