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Introduction

§ High q0 (> 1.5) & qmin, low li (~ 0.75) by off-axis ECCD provided good testbed for driving & controlling the AEs.
§ Co-directional ECCD (off-axis, 0.7MW) mitigates AEs successfully in the high !P or high qmin scenarios of KSTAR è

Performance enhancement, but the on-axis co-ECCD is not so effective.
§ q0 drop (~2.0 à ~1.5) and core q-profile shaping, core Te increase è preventing wide gap in the core (plus, higher !

could move gaps up) è Increase of continuum damping & core Te (Landau damping) & β increase are beneficial to
increase whole damping è Weak AE activities & EP confinement enhancement

§ AE mitigation è Decrease in fast-ion loss, Increase of non-inductive current fraction
§ Tearing-mode amplitude (small) can increase as ECCD approaches core, but AEs are mitigated without performance

degradation. (β ⇧, Neutron ⇧, core Te, Ti ⇧ )

§ Effective window of ECCD location is narrow, and the EC beam-width / efficiency depending on the ECCD injection
geometry need to be considered.

§ Not into the fast-ion profile stiffness since the PNB is ~ 3.0 MW. Future experiment will expand the AE mitigation region
in higher fast-ion pressure gradient.

CONCLUSION
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1. Difference in performance of high #P long-pulse discharges by changing ECCD 
deposition location[3,4]

1. Motivation:

§ Alfvén eigenmodes (AE) in the high-performance discharges lead to

I. Redistribution of core fast-ion pressure à Degradation of fusion yield

II. Fast-ion loss à Damage on the first-wall

§ Need of AE mitigation to avoid performance degradation[1,2] in the KSTAR 
advanced scenarios.

2.  Experimental Observations:

§ Experimental observations have drawn the attention to significant enhancement 
of performance in high βP discharges.

§ Off-axis co-ECCD applications in the high qmin (or q0) scenario show TAE mitigation 
(for several tens of $E), resulting in fast-ion confinement enhancement

§ Mechanism of AE mitigation (Alfven gap movement and shrink)

§ Diagnostics and Modelling: Comparison with the ECE signal (coherence), Alfven 
continuum/gap (NOVA-k), Change in fast-ion pressure profile, NBCD, … 

BT0 = 1.9T (18597), 1.8 T (18602),  IP = 0.4 MA
NBI1-A/B/C = 100/70/70 keV (3.8 MW), 
PEC = 0.7 MW (105 GHz, ZEC ~ 0cm)

§ Same heating power, but different injection location of ECCD
§ Proper ECCD injection location à TAE mitigation à achievement of steady-state high βP (~ 3.0) 

discharge (18602).
§ Increase of neutron rate, stored energy, βP with TAE mitigation

18602 1.8T
18597 1.9T

<EC resonance layer>

TAE activities (n= 1 - 5)

High βP discharge w/ TAE suppression by ECH

ECH-off period:
TAE excitation (n = 1, 3)

Magnetics (MC1T05), KSTAR 18597

Magnetics (MC1T05), KSTAR 18602

AE-mitigated 
(ρpol,ECCD ~ 0.26)

AE-active
(ρpol,ECCD ~ 0.11)

ECH-off in 
shot# 18602
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Core Alfvén gap (TAE) is 
moving up, avoiding 
candidate TAEs in the core.

Alfvén gap is wide in the core due to weakly reversed-
shear (ECCD) q-profile, but gap location is higher than 
normal TAE frequency.

ECCD-off

ECCD-on

3.1. Alfvén gap mode analyses (NOVA-k[6])

§ Experimental condition:

(BT, IP) = (1.8 T,  0.5 MA), q0 > 1.5 
@ flat-top,  li ~ 0.7 – 0.9

Heating:  NBI1-A & B (80/90 keV, 
PNB ~ 2.9 MW), PECCD ~ 0.7 MW

1. Early beam-timing to start 
with high q0 and Alfvenic 
activities. 

2. co-ECCD (%tor ~ +20°, off-axis)
scan (+15cm < ZEC < +30cm)
across the possible mode
location by steering mirror 
to see if AEs are excited or 
mitigated.

EC resonance layer (BT ~ 1.8T)

280cm

launcher

35cm
Z=0

EC3

ZEC ~ +15cm

ZEC ~ +30cm

AE-active 
(1.5 – 5.0s) 

AE-mitigated
(5.5 – 9.0s) 

ECCD profile

§ High qmin (or high q0) reference
ü Early heating with PNB ~ 3.7 MW (NBI1-B, C)
ü High qmin & low li à q0 ~ 1.5 – 2.0 @ flat-top,  li ~ 0.75 – 0.8
ü Wide Alfvén gap that can contain large # of TAEs
ü Active Alfvénic activities à Substantial decrease in neutron rate

& increase in fast-ion loss

High qmin scanerio:
Inter-ELM fast-ion 
loss is strong even 
in the H-mode.

β

Heating

Neutron

Internal inductance

KSTAR shot# 21006, PNB=3.7MW (co-tangential), PEC=0.7MW (off-axis)

Magnetics (MC1P03), KSTAR 21006

2.2. AE suppression by co-ECCD in high qmin (> 1.5) discharge

2.1. High qmin configurations open wide Alfven gap[5] à Active AEs

q-profile

TAE active TAE mitigationIntermediate

Decrease of mode 
coherence as 
ECCD scans.

Mean coherence of Bandpass-
filtered (80-180kHz) ECE signals

Magnetics (MC1P03), KSTAR 21695

AE-active 
(ρpol,ECCD ~ 0.77)
t ~ 5.0s

AE mitigation
(ρpol,ECCD ~ 0.48)
t ~ 7.0s

+21cm > ZEC > +15cm à
Performance increase

Performance enhancement 
during the ECCD scan

AE mitigation

β

Heating

Stored energy

Neutron

KSTAR shot# 21695, PNB=2.9MW (co-tangential), PEC=0.7MW

AE-active 
(ρpol,ECCD ~ 0.77)

AE mitigation
(ρpol,ECCD ~ 0.48)

Intermediate 
Change in AEs

Magnetics (MC_toroidal), KSTAR 21695

NBI1-A/B @ 80 keV / 90 keV (2.9 MW), ECCD (105GHz, 0.7MW, &tor = +20°) 
scan:  ZEC = +30, à +15cm (during 5.0 – 5.5s) :
§ ZEC approaches +15cm. è Alfvenic activity is disappeared and the mean 

coherence of ECE signals in the Alfvenic range decreases.
§ Overall performance increase è Stored energy and !N:  ~ 25% increase,  

Neutron rate :  almost doubled
§ Far-off axis ECCD touches TM, but not affect to AEs. Optimal deposition 

needed!

FILD

2.3. Comparison with the internal measurements (ECE)

§ Mean coherence of band-passed (80 – 180 kHz) ECE signals shows the Alfvenic mode mitigation.
§ AE-active & Intermediate phases exhibit the strong core modes in the core ECE signal.
§ AE-mitigation phase shows weak or no core modes.
§ Edge Alfvenic modes are visible in the AE-active & Intermediate phases.
§ AE-mitigation phase does not show the clear edge activity.

KSTAR 21695 t=4.45s (AE-active), n=2 KSTAR 21695 t=4.45s (AE-active), n=3 KSTAR 21695 t=4.45s (AE-active), n=4

KSTAR 21695 t=7.4s (AE-suppress), n=2 KSTAR 21695 t=7.4s (AE-suppress), n=3 KSTAR 21695 t=7.4s (AE-suppress), n=4

§ Growing TAEs in the core: much less @ AE-suppression phase
§ Due to increase of continuum damping and Landau damping (increased core Te), not sensitive to ne change
§ Overall plasma # increases. à Beneficial to TAE stabilization (same in high βP case)
§ Critical fast-ion pressure (#c) driving Alfven eigenmodes in the AE-suppression phase is higher than AE-active 

phase. Higher fast-ion pressure is required to overcome the damping components.

3.2. Profiles (fast-ion pressure, NBCD[7], neutron (TRANSP))
21695, AE-mitigation phase (t ~ 7.4s)21695, AE-active phase (t ~ 4.45s)
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ad-hoc Dfast ∼ 1.5 m2/s
kick-model (n=1-3 TAEs)
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AE-active AE mitigationIntermediate 
Change in AEs

Classical level

§ Decrease of loop voltage (-200 mV à -110 mV, fNI 0.75 
à 0.95) while the AE is mitigated.

§ AE mitigation while applying the ECCD to the proper 
location è Enhanced fast-ion confinement (mainly 
co-passing by co-tangential NBI) è Increase of non-
inductive current fraction (NBCD, JBS ⇪) è Overall 
performance increases.

§ Fast-ion pressure profiles 
(TRANSP) modelled and 
matched to the measured 
neutron emission rate.

§ Fast-ion pressure 
increases as the AEs are 
mitigated. But the 
measured neutron 
emission is still below the 
classical level.
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Dfast

Ad-hoc Dfast estimation: 
Total thermal energy and fast ion 
energy is equal to the total 
energy estimated from the EFIT, 
and the Dfast value is estimated.

*+,+-. ≡ *+0123-. +*5-6+(85-6+)

#critical to drive TAEs

Alfvén gaps move into the region close to the core. 
à More chance to destabilize the TAEs, enhancing 
fast-ion transport.

AE-mitigated AE-active

Magnetics (MC_toroidal), KSTAR 21695


