Analysis of velocity distribution of D-D fusion products driving ion cyclotron emission on JT-60U

S. Sumida¹, K. Shinohara¹, M. Ichimura², A. Bierwage¹ and S. Ide¹

¹National Institutes for Quantum and Radiological Science and Technology, Japan ²Plasma Research Center, University of Tsukuba, Japan

16th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems – Theory of Plasma Instabilities

Contents

1. Introduction

• Ion cyclotron emission (ICE)

2. Analysis method

- Resonant v_{\parallel} : evaluated from measurement results with ICRF antennas
- Fast ion velocity distribution : evaluated with OFMC code

3. Analysis results

- 3.1. ICE1 (H?)
 - Observation of ICE1
 - Comparison of fast H ion velocity distributions with H ion cyclotron resonance condition

3.2. ICE2 (T?, D?)

- Observation of ICE2
- Comparison of fast T and D ion velocity distributions
 with each ion resonance condition
- Cal. of linear growth rate of slow wave

4. Summary

Contents

1. Introduction

- Ion cyclotron emission (ICE)
- 2. Analysis method
 - Resonant $v_{||}$: evaluated from measurement results with ICRF antennas
 - Fast ion velocity distribution : evaluated with OFMC code

3. Analysis results

- 3.1. ICE1 (H?)
 - Observation of ICE1
 - Comparison of fast H ion velocity distributions with H ion cyclotron resonance condition
- 3.2. ICE2 (T?, D?)
 - Observation of ICE2
 - Comparison of fast T and D ion velocity distributions with each ion resonance condition
 - Cal. of linear growth rate of slow wave
- 4. Summary

Ion Cyclotron Emission

□ Ion Cyclotron Emission (ICE)

: Emission of ion cyclotron range of frequency (ICRF) waves by fast ions

- Features of ICEs observed in large-sized tokamaks; JET, TFTR, JT-60U
 - ICE freq. ~ ion cyclotron frequency f_{ci} and lf_{ci} at outer midplane edge

 $f_{\rm ci} = q_{\rm i} B / 2\pi m_{\rm i}$, *l* : integer

- Correlation with Edge Localized Modes (ELMs)
- □ Near *outer midplane edge*
 - : Anisotropy in ion velocity distribution due to magnetic drift / finite orbit effect
 - \rightarrow A possible driving source for ICE through velocity-space instabilities

→ Emission region
 = Outer midplane edge

Previous ICE study in JT-60U

	Obs. freq.	Dispersion relation
ICE1	$\sim l f_{\rm cH}$	Fast wave [2]
ICE2	$\sim f_{\rm cT}, \sim f_{\rm cD}$	Slow wave [1]

Purpose : Identify driving sources for ICE1 & ICE2

- \rightarrow Investigate whether fast ion velocity distributions are consistent with the resonance condition
- 1. Evaluate resonant v_{\parallel} from freq. & k_{\parallel} Measured with ICRF antennas
- 2. Compare <u>fast ion distribution</u> with resonant $v_{||}$ Evaluated with OFMC code

 $k_{||}$

Contents

- 1. Introduction
 - Ion cyclotron emission (ICE)

2. Analysis method

- Resonant v_{\parallel} : evaluated from measurement results with ICRF antennas
- Fast ion velocity distribution : evaluated with OFMC code
- 3. Analysis results
 - 3.1. ICE1 (H?)
 - Observation of ICE1
 - Comparison of fast H ion velocity distributions with H ion cyclotron resonance condition
 - 3.2. ICE2 (T?, D?)
 - Observation of ICE2
 - Comparison of fast T and D ion velocity distributions with each ion resonance condition
 - Cal. of linear growth rate of slow wave
- 4. Summary

To evaluate k_{\parallel} , toroidal wavenumbers k_{φ} are measured with 3 ICRF antenna straps

 $\Box \text{ Toroidal wavenumber } k_{\varphi}$ $k_{\varphi} = \frac{\Delta \theta_{14} + 2\pi j_{14}}{\Delta L_{14}} = \frac{\Delta \theta_{45} + 2\pi j_{45}}{\Delta L_{45}}$ $= \frac{\Delta \theta_{15} + 2\pi j_{15}}{\Delta L_{15}} \begin{array}{l} \Delta \theta : \text{Phase difference} \\ \Delta L : \text{Distance btw straps} \\ j : \text{Integer} \end{array}$

✓ Standard deviation σ

$$\sigma = \sqrt{\frac{\sum \left(k_{\varphi} - \overline{k_{\varphi}}\right)^2}{N-1}}$$

 \rightarrow Search for a *j* combination when σ becomes the minimum.

$\square Assume k_{\parallel} = k_{\varphi}$

- $\leftarrow \begin{array}{c} \bullet & B \text{ direction} \sim \text{toroidal direction} \\ \leftarrow & (/ \text{ large } q_{\text{safe}} \text{ near plasma edge}) \end{array}$
 - Measured poloidal wavenumber is small [1].

[1] M. Ichimura+ NF2008 5/15

To evaluate velocity distribution of fast D ion & DD fusion produced ions, OFMC code is used

□ OFMC code [4]

: traces guiding-center and/or full-gyro orbits of fast ions in 3-D magnetic field.

- ✓ Assumptions in this study,
 - Orbit calculation : Guiding-center, neo-classical
 - Evaluation of velocity distribution under *stationary* condition
- ✓ Can take into account quantitatively evaluated birth distribution of fusion produced (FP) ions

Direction of operator for cyclotron resonance in velocity space

□ Operator *L* for wave-particle interaction [5]

$$L = \omega \frac{\partial}{\partial E} + \frac{l\Omega_{ci} - \Lambda \omega}{E} \frac{\partial}{\partial \Lambda} + N \frac{\partial}{\partial P_{\varphi}}$$
$$\Lambda = \frac{\mu B}{E} = \frac{v_{\perp}^2}{v^2} = \sin^2 \phi_{pitch}$$

•
$$L \cdot f_{dis} > 0$$
 : particle \rightarrow wave
• $L \cdot f_{dis} < 0$: wave \rightarrow particle

In velocity space,

^[5] e.g. L. -G. Eriksson+ PoP1999

Contents

- 1. Introduction
 - Ion cyclotron emission (ICE)
- 2. Analysis method
 - Resonant $v_{||}$: evaluated from measurement results with ICRF antennas
 - Fast ion velocity distribution : evaluated with OFMC code

3. Analysis results

- 3.1. ICE1 (H?)
 - Observation of ICE1
 - Comparison of fast H ion velocity distributions with H ion cyclotron resonance condition
- 3.2. ICE2 (T?, D?)
 - Observation of ICE2
 - Comparison of fast T and D ion velocity distributions with each ion resonance condition
 - Cal. of linear growth rate of slow wave
- 4. Summary

Typical plasma parameters for ICE1 observation

 Evaluate velocity distribution under stationary condition by using parameters at *t* = 13.8 sec

ICE1

Comparison of fast H ion velocity distribution ICE1 with ion cyclotron resonance condition

Contents

- 1. Introduction
 - Ion cyclotron emission (ICE)

2. Analysis method

- Resonant $v_{||}$: evaluated from measurement results with ICRF antennas
- Fast ion velocity distribution : evaluated with OFMC code

3. Analysis results

- 3.1. ICE1 (H?)
 - Observation of ICE1
 - Comparison of fast H ion velocity distributions with H ion cyclotron resonance condition

3.2. ICE2 (T?, D?)

- Observation of ICE2
- Comparison of fast T and D ion velocity distributions with each ion resonance condition
- Cal. of linear growth rate of slow wave
- 4. Summary

Typical plasma parameters for ICE2 observation

ICE2

- ICE2 begins to appear just after N-NB injection (or increment of fusion reaction rate)
- Evaluate velocity distribution under stationary condition by using parameters at $t = 12.0 \sec \frac{10}{15}$

Comparison of fast **T** ion velocity distribution ICE2 with ion cyclotron resonance condition

11/15

Comparison of fast **D** ion velocity distribution ICE2 with ion cyclotron resonance condition

Resonant $v_{\parallel} = 4-5 \times 10^6$ m/s

To confirm whether slow waves become unstable by N-NB injected D ions, dispersion relations are calculated ICE2

Wave dispersion code [6]

Assumptions : Linear theory and uniform plasma

Maxwell's equation

$$k \times (k \times E) + \frac{\omega^2}{c^2} \overleftarrow{\varepsilon} E = 0$$

• Dielectric tensor ε for arbitrary velocity distribution function f_s

$$\vec{\varepsilon} = \left(1 - \sum_{s} \frac{\omega_{ps}^{2}}{\omega^{2}}\right)I + \sum_{s,l} \frac{\omega_{ps}^{2}}{\omega^{2}} \int \frac{\vec{H}_{s,l}}{\omega - k_{\parallel}v_{\parallel} - l\Omega_{s}} \left(\frac{l\Omega_{s}(\partial f_{s})}{v_{\perp} \partial v_{\perp}} + k_{\parallel} \frac{\partial f_{s}}{\partial v_{\parallel}}\right) \frac{1}{n_{s}} d^{3}v$$

N-NB injected D ion model [7]

$$f_{NNB} = \frac{3n}{2\pi \ln\left(1 + \left(\frac{v_b}{v_c}\right)^3\right)} \frac{\eta(v_b - v)}{v^3 + v_c^3}$$
$$\times \sum_{l=0}^{\infty} \left(l + \frac{1}{2}\right) u^{l(l+1)} P_l(p) K_l \eta(v_b - v)$$

[6] S. Sumida+ EPS2018 [7] *e.g.* J. G. Cordey+ PF1974

Slow waves become unstable due to N-NB injected D ions

D plasma including fast D ions

B = 1.44 T, $n_e = n_D = 10^{19}$ m⁻³, $T_e = T_D = 500$ eV, $n_{fast} = 8.0 \times 10^{15}$ m⁻³,

 $v_0 = -5.6 \times 10^6$ m/s ($E_{\text{N-NB}} = 330$ keV), $\phi_{\text{pitch}} = 20$ degree (referred from parameters at $\rho_{\text{out}} \sim 0.95$ in E47967)

- N-NB injected D ions can destabilize slow waves propagating in the oblique direction
- → Growth rate of slow wave supports driving source for ICE2 = N-NB injected D ions

Summary

We identified driving sources for ICE1 & ICE2 by using a simple qualitative method with the resonance condition and the operator direction based on ...

- ✓ Dispersion relation measured with ICRF antennas
- ✓ Fast ion velocity distribution evaluated with OFMC code

□ ICE1 (Fast wave): DD fusion produced H ions

• Fast H ion distribution can satisfy the resonance condition & its gradient is consistent with the operator *L* direction.

□ ICE2 (Slow wave): *N-NB injected D ions*

- N-NB injected D ion distribution can satisfy the resonance condition & its gradient is consistent with the operator L direction.
- Time scale is consistent with the observation.
- Destabilization of slow waves due to N-NB injected D ions was confirmed

Acknowledgements

- This research was conducted using the supercomputer SGI ICE X in the Japan Atomic Energy Agency.
- The authors would like to thank Dr. Satoshi Yamamoto of QST for giving useful suggestions and Dr. Takahiro Bando of QST for his supply of an analytical tool.

Summary

We identified driving sources for ICE1 & ICE2 by using a simple qualitative method with the resonance condition and the operator direction based on ...

- ✓ Dispersion relation measured with ICRF antennas
- ✓ Fast ion velocity distribution evaluated with OFMC code

□ ICE1 (Fast wave): DD fusion produced H ions

• Fast H ion distribution can satisfy the resonance condition & its gradient is consistent with the operator *L* direction.

□ ICE2 (Slow wave): *N-NB injected D ions*

- N-NB injected D ion distribution can satisfy the resonance condition & its gradient is consistent with the operator L direction.
- Time scale is consistent with the observation.
- Destabilization of slow waves due to N-NB injected D ions was confirmed

To confirm whether slow waves become unstable by N-NB injected D ions, dispersion relations are calculated ICE2

□ Wave dispersion code [6]

Assumptions : Linear theory and uniform plasma

Maxwell's equation

$$k \times (k \times E) + \frac{\omega^2}{c^2} \overleftarrow{\varepsilon} E = 0$$

• Dielectric tensor ε for arbitrary velocity distribution function f_s

$$\begin{split} \vec{\varepsilon} &= \left(1 - \sum_{s} \frac{\omega_{ps}^{2}}{\omega^{2}}\right) I + \sum_{s,l} \frac{\omega_{ps}^{2}}{\omega^{2}} \int \frac{\vec{H}_{s,l}}{\omega - k_{\parallel}v_{\parallel} - l\Omega_{s}} \left(\frac{l\Omega_{s}(\partial f_{s})}{v_{\perp} \partial v_{\perp}} + k_{\parallel} \frac{\partial f_{s}}{\partial v_{\parallel}}\right) \frac{1}{n_{s}} d^{3}v \\ n_{\text{fastD}} &= 4 \times 10^{15} \text{ m}^{-3}, \phi_{0} = 20 \text{ deg.} \\ \delta v_{E1} &= 0.7v_{0}, \delta v_{E2} = 0.1v_{0} \\ \delta v_{E1} &= 0.7v_{0}, \delta v_{E2} = 0.1v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p2} &= 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} = 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p2} &= 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p2} &= 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p2} &= 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p2} &= 0.01v_{0} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p1} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p1} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p1} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p1} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p1} &= 0.1v_{0}, \delta v_{p2} \\ \delta v_{p1} &=$$

Slow waves become unstable due to N-NB injected D ions

D plasma including fast D ions

 $B = 1.44 \text{ T}, n_e = n_D = 10^{19} \text{ m}^{-3}, T_e = T_D = 500 \text{ eV}, n_{\text{fast}} = 8.0 \times 10^{15} \text{ m}^{-3},$

 $v_0 = -5.6 \times 10^6$ m/s ($E_{\text{N-NB}} = 330$ keV), $\phi_{\text{pitch}} = 20$ degree (referred from parameters at $\rho_{\text{out}} \sim 0.95$ in E47967)

N-NB injected D ions can destabilize
 slow waves propagating in the oblique direction

Non-thermal ion velocity distribution can be formed near outer midplane edge

JT-60U tokamak

- Positive-D-ion source (P-NB) : ~80 keV
 - ✓ Perpendicular NB (Perp. P-NB) × 7
 - ✓ Tangential NB (Tang. P-NB) \times 4
- Negative-D-ion source (N-NB) : ~350 keV
 ✓ Tangential NB (Tang. N-NB) × 2

 $D + D \rightarrow {}^{3}\text{He}(0.82 \text{ MeV}) + n(2.54 \text{ MeV})$ $\rightarrow T(1.01 \text{ MeV}) + H(3.03 \text{ MeV})$