Alfvén Eigenmode evolution in NBI-heated plasmas with dynamic

magnetic configuration in the TJ-II stellarator

A.V. Melnikov¹, L.G. Eliseev¹, A. Cappa², E. Ascasibar², C. Hidalgo², J.L. de Pablos², M. Liniers², F. Castejon², M.A. Drabinskiy¹, J.M. Barcala², A.A. Chmyga³, P.O. Khabanov¹, A.S. Kozachek³, M. Ochando², S.E. Lysenko¹, G. Martin², A. Molinero², S.E. Sharapov⁴, D.A. Spong⁵, J. Varela⁶ and TJ-II team²,

> ¹ National Research Centre 'Kurchatov Institute', Moscow, Russia, ² CIEMAT (Fusion National Laboratory & Technology Dept), Madrid, Spain ³ Institute of Plasma Physics, NSC 'Kharkov Institute for Physics and Technology', Kharkov, Ukraine, ⁴ CCFE, Culham Science Centre, Oxon OX14 3DB, UK ⁵ Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, USA

> ⁶ National Institute for Fusion Science, National Institute of Natural Science, Toki, 509-5292 Japan

melnikov_07@yahoo.com

INTRODUCTION

Alfvén Eigenmodes (AEs) were studied in the low magnetic shear flexible heliac TJ-II ($B_0=1$ T, < R > = 1.5 m, < a > = 0.22 m). The AE-modes were excited by hydrogen co-NBI in L-mode hydrogen plasmas (P_{NBI}≤0.56 MW, E_{NBI}=32 keV), and were diagnosed by HIBP [1], MPs and bolometers.

Taking advantage of the unique TJ-II capabilities, a dynamic magnetic configuration experiment with iota variation during discharge was performed via inducing the net plasma current $I_{\rm pl}$.

Experiment has shown a strong effect of the iota value on the mode frequency. A drastic frequency change from ~50 to ~250 kHz was observed for some AEs, when plasma current as low as ±2 kA was induced by small (≤10%) changes in the vertical field (VF). On top of the conventional linear link between f_{AE} and I_{pl} , which could explain the local extrema of f_{AE} coinciding with the extrema of I_{pl} via k_{ll} , a new type of f_{AE} dependence on I_{pl} has been observed.

EXPERIMENT: Extrema of Type I

Modelling

ID: 38

AE frequency follows the formula [2] $f_{AE}(\rho_{AE}) = \frac{1}{2\pi} k_{\parallel} V_A$ $k_{\parallel} = \frac{1}{R} |ml - n|$ $\boldsymbol{\iota}(\rho_{AE}, t) = \boldsymbol{\iota}_{vac}(\rho_{AE}, t) + C(\rho_{AE}) I_{pl}(t)$

Poloidal propagation velocity

 V_{θ} =Lf/m

SCENARIO: Variable Magnetic Configuration

Vertical Field (VF) Modulation keeps vacuum iota the same, but causes the change of the plasma current I_{pl} and therefore changes the real iota.

Extrema of type II are reproducible and robust phenomenon. They are accompanied by splash of the frequencies 35-45 kHz and higher up to 300 kHz.

Psd(#33706 MIR5C) <512:51

EXPERIMENT: Extrema of Type II

The first group of shots is characterized by: 1) Lifetime of AE is below a period of VF variation. 2) AE frequency minima and maxima corresponds to extrema of actual iota caused by I_{pl}.

STEADY TO CHIRPING TRANSITION

There is the experimental lower limit for f_{AF} : $f_{AF} > 50$ kHz. A theory predicts $f_{AF} > f_{GAM}$

MODELLING: Modified model

Modified model: $f^*(t) = f_{model} (I_{pl}(t)) + f_{0}, f_0 = f_{min} = const$

If we shift f_{model} on f_{min} = const, we can obtain the curve $f^*(t)$ very close to the experimental $f^{AE}(t)$.

Minima of type II in this case are result of change of sign of |n-tm| $in k_{\parallel} = 1/R^* |n-tm|.$

- Minima of type II appear, when $k_{II} = 1/R \cdot |n - m_{i}|$ becomes zero and term $(n - m_i)$ changes its The old model [2] predicts that f_{AF} should reflect from zero.
 - Minima of type II are visible, when I_{pl} increases, and much less visible, when I_{nl} decreases, because AE

Minima of type II are smooth due to the iota smoothing. They should be sharp due to the modulus dependence in |n - เm|.

Transformation due to I_{pl} variation caused by VF

 n_e and T_e are permanent, collisionality (slowing-down time) remains. How does iota cause the transformation?

Transformation due to change sign of I_{pl} time-derivative

SUMMARY

• The global minimum value for f_{AE} was observed, no AE exists with $f_{AE} < f_{min}$ • On top of conventional linear link between f_{AE} and plasma current I_{pl} , a new type of f_{AE} dependence on I_{pl} has been observed in TJ-II: when t = n/m for specific mode, f_{AE} reaches f_{min} , then changes direction of evolution (decrease to raise). • The evolution of AE from steady frequency mode to chirping mode and back takes place, when the plasma current reaches certain values or changes direction of evolution (raise to decrease).

ACKNOWLEDGEMENTS / REFERENCES

Russian team is supported by Russian Science Foundation 19-12-00312.

[1] A.V. Melnikov *et al*, Nuclear Fusion **57** (2017) 072004 [2] A.V. Melnikov *et al,* Nuclear Fusion **54** (2014) 123002