

Fast-ion loss simulation with MEGA code in the Large Helical Device

R. Seki (NIFS)

In collaboration with Y. Todo, Y. Suzuki, K. Ogawa, M. Isobe, M. Osakabe, and LHD EXP group National Institute for Fusion Science, Toki, Japan

SOKENDAI (Department of Fusion science, The Graduate university For Advanced Studies), Toki, Japan

Observation of TAE burst in the LHD

ORecurrent TAE bursts are observed in the LHD experiments with 180 keV tangential NBI.

- OTwo frequency components are observed in shot #47645 (figure). 50-60kHz, m/n=2/1; 65-70kHz, m/n=1/1
- OThe lost fast ions during TAE burst were measured by scintillatorbased lost fast-ion loss detector (FILD).
- Olt is difficult to get an overall understanding of fast ion loss process only by the local measurements in LHD.

Computer simulation is a powerful tool to investigate the interaction between fast ions and fast-ion driven AE instabilities

MEGA code

• MEGA code

- a hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics in the real coordinates with use of equilibrium magnetic field calculated by HINT.

Nonlinear calculation of fast ion induced instabilities.
Fast ion transport /losses due to the instabilities.

 Energetic particle - MHD hybrid simulations of AE burst in LHD.

 To investigate the time evolution of AE and beam pressure
MEGA is applied to the Large Helical Device experiments with the realistic condition close to the experiment.

Validation of the simulation on fast ion loss due to the AE.
Comparison of lost fast ion velocity distribution in the simulation with the Scintillator-based fast-ion loss detector (FILD) experiment.

Contents

- Introduction
- Analyses of AE burst
 - Time evolution of AE burst
 - Time evolution of beam pressure profile
- Comparison of fast ion loss with measurements

Simulation condition

- **OMagnetic configuration** (calculated by HINT code) Bax= 0.6 T, <beta> =1.8 %
- **OTangential-NBIs**

Port through power $\sim 15 \text{ MW}$ (total absorption power ~ 9 MW) beam injection energy \sim 180 keV

O Ti = Te, ni=ne profile measured in the LHD experiment. ORealistic fast-ion birth profile (HFREYA)

K. Ogawa, et al., Nucl. Fusion 52, 094013 (2012)

5

Time evolution of MHD kinetic energy, fast ion loss rate and stored fast ion energy

Alfven eigenmode (AE) burst

OThe primary mode number at the initial peak is m/n=1/1. And then, the instability with m/n=2/1 becomes large.

O There is the maximum peak of instability at about 37.45 ms. The peak is coincident with the peak of mode amplitude with m/n=2/1.

OThe fast ion loss rate takes the maximum value near the peak of the m/n=2/1 mode amplitude.

Frequency spectra of radial MHD velocity harmonics

rho

(I) The fast ion beta is almost same
as that before the AE burst.

(I) The fast ion beta is almost same
as that before the AE burst.

(II) (There is the maximum peak of instability with m/n=2/1) The fast ion pressure decrease for rho < 0.6 and increase for rho > 0.6.

(I) The fast ion beta is almost sameas that before the AE burst.

(II) (There is the maximum peak of instability with m/n=2/1) The fast ion pressure decrease for rho < 0.6 and increase for rho > 0.6.

(III) After the AE burst, The fast ion pressure increases.

AE-induced fast ion loss rate versus the maximum AE amplitude

Fast ion loss rate brought about by the AE burst is proportional to the square of AE amplitude.

Contents

- Introduction
- Analyses of TAE burst
 - Time evolution of AE burst
 - Time evolution of beam pressure profile
- Comparison of fast ion loss with measurements

Scintillator-based fast-ion loss detector (FILD)

Numerical fast-ion loss detector with Lorentz orbit (Numerical FILD)

ONumerical fast-ion loss detector with Lorentz orbit

Fast ion orbit near FILD is retraced by using Lorentz orbit.
64 Lorentz orbit particle are traced

• Aperture shape is a circle with radius 2 cm. Only the fast ions passing through the aperture are detected.

10 numerical FILD is set. (assuming helical symmetry)

Comparison of the velocity distribution with measurements by FILD

ODuring TAE burst, the velocity space region of lost fast ions calculated by MEGA is similar to the lost fast ion measurements by FILD.

Comparison of the velocity distribution with measurements by FILD

OThe fast ion losses with pitch angle ~ 40, E~100-150keV increase during AE burst in MEGA simulation. This is similar to the FILD measurement.

OMost of the fast ions detected by numerical FILD are the reentering co-passing particles. Comparison of lost fast-ion between the Numerical FILD and Lost fast-ion

O Most of fast-ions measured by numerical FILD are the reentering fast-ion deposited near rho~ 0.9. Comparison of lost fast-ion between the Numerical FILD and Lost fast-ion

ODuring AE burst, fast ion with lower energy(~100 keV) than injection energy (~180 keV) was detected by numerical FILD. OThe main component of lost co-going fast-ions at the loss boundary are the particles with E< 50 keV. 20

Summary

OMEGA is applied to the Large Helical Device experiments with the realistic condition close to the experiment.

O Fast ion driven instabilities and lost fast ion properties are investigated.
O Lost fast ion velocity distribution in the simulation is compared with the

FILD measurement.

The increment of the fast ion loss rate is proportional to the square of AE amplitude.

The velocity space region of lost fast ions calculated by MEGA is close to the lost fast ion measurements by FILD.

Lost fast-ion at the FILD are different from those at the divertor region.

• During AE burst, fast ion with lower energy than injection energy was detected by numerical FILD.

• The main component of lost co-going fast-ions at the loss boundary are the particles with E< 50 keV. 21