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Observation of TAE burst in the LHD

M. Osakabe, et al., Nucl. Fusion 46 S911
ORecurrent TAE bursts are observed in the (2006) .

LHD experiments with 180 keV tangential
NBI.

dB/dt [T/s]

OTwo frequency components are
observed in shot #47645 (figure).
50-60kHz, m/n=2/1; 65-70kHz, m/n=1/1

Freq. [kHz]

OThe lost fast ions during TAE burst
were measured by scintillator- VOl | ANV WG )
based lost fast-ion loss detector (FILD). sopr et AR |l
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Olt is difficult to get an overall understanding time (s
of fast ion loss process only by the local
measurements in LHD.

-

Computer simulation is a powerful tool to investigate the
iInteraction between fast ions and fast-ion driven AE instabilities




MEGA code

e MEGA code
- a hybrid simulation code for nonlinear magnetohydrodynamics

(MHD) and energetic-particle dynamics in the real coordinates
with use of equilibrium magnetic field calculated by HINT.

i> [ Otime evolution of fast ion

PIC | - -source of fast ion
-change of position and velocity

- +fastion loss
Fast ion pressure
N\ {Otime evolution of MHD

MHD -change of magnetic field and electric field
-evolution of AE

| I l Magnetic field = electric field with instabilities

@ Nonlinear calculation of fast ion induced instabilities.
@ Fast ion transport /losses due to the instabilities.




Purpose

® Energetic particle - MHD hybrid simulations of AE
burst in LHD.

@ To investigate the time evolution of AE and beam pressure
-MEGA is applied to the Large Helical Device experiments
with the realistic condition close to the experiment.

@ Validation of the simulation on fast ion loss due to the AE.

- Comparison of lost fast ion velocity distribution in the
simulation with the Scintillator-based fast-ion loss detector
(FILD) experiment.
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* Analyses of AE burst
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Simulation condition

K. Ogawa, et al., Nucl. Fusion

OMagnetic configuration
(calculated by HINT code)
Bax=0.6 T, <beta>=1.8 %
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Time evolution of MHD kinetic energy, fast ion loss rate
and stored fast ion energy

MHD kinetic enegy [arb. unit]

Fast ion loss rate [arb.]

stored fast-ion energy [arb. unit]
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O AE bursts occur recurrently.

OFast-ion loss rate is larger than
that In classical simulation
(green).

O Stored fast-ion energy is less
than that in classical simulation.



~Alfven eigenmode (AE) burst

HD kinetic energy [arb.]
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OThe primary mode number
at the initial peak is m/n=1/1.
And then, the instability with
m/n=2/1 becomes large.

O There is the maximum
peak of instability at about
37.45 ms. The peak is
coincident with the peak of
mode amplitude with
m/n=2/1.

OThe fast ion loss rate
takes the maximum value
near the peak of the m/n=2/1
mode amplitude.



Frequency spectra of radial MHD velocity harmonics
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Time evolution of fast ions pressure profile
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Time evolution of fast ions pressure profile
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Time evolution of fast ions pressure profile

MHD kinetic energy
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(I) The fast ion beta is almost same
as that before the AE burst.
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(I1) (There is the maximum peak of
instability with m/n=2/1)

The fast ion pressure decrease
for rho < 0.6 and increase for rho >
0.6.
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Time evolution of fast ions pressure profile

MHD kinetic energy
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instability with m/n=2/1)

The fast ion pressure decrease
for rho < 0.6 and increase for rho >
0.6.

(111) After the AE burst,

The fast ion pressure increases.
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AE-induced fast ion loss rate versus the maximum AE amplitude
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Fast ion loss rate brought about by the AE burst Is
proportional to the square of AE amplitude.
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Scintillator-based fast-ion loss detector (FILD)

Model of scintillator head

b Double aperture structure

¢ 134mm

|
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-
scintillator head

OThe lost co-going fast-ions during

AE burst were measured by FILD

near horizontal elongated poloidal
plane.

OTwo lost regions were observed
during the TAE burst.

Pitch angle 15



Numerical fast-ion loss detector with Lorentz orbit (Numerical FILD)

Model of numerical FILD

image transfer tube

SO == r ﬁ—w‘m 110
/ ),;";,_.;;‘-"" image conversion tube
§ P e

Giazaam  gcintillator head

=

¢ 134mm

Guiding center
<> | =49mm

scintillator head

ONumerical fast-ion loss detector with Lorentz orbit
- Fast ion orbit near FILD is retraced by using Lorentz orbit.
64 Lorentz orbit particle are traced
- Aperture shape is a circle with radius 2 cm. Only the fast
lons passing through the aperture are detected.

10 numerical FILD is set. (assuming helical symmetry)
16



Comparison of the velocity distribution with measurements by FILD

FILD measurement
- P -

MEGA (during TAE)
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ODuring TAE burst, the velocity space region of lost fast ions
calculated by MEGA is similar to the lost fast ion measurements
by FILD.
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Comparison of the velocity distribution with measurements by FILD

Increase of lost fast-ions during
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OThe fast ion losses with pitch angle ~ 40, E~100-150keV
Increase during AE burst in MEGA simulation. This is similar to

the FILD measurement.

OMost of the fast ions detected by numerical FILD are the re-

entering co-passing particles.
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Comparison of lost fast-ion between the Numerical FILD and Lost fast-ion

Numerical FILD
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O Most of fast-ions measured by numerical FILD are the re-
entering fast-ion deposited near rho~ 0.9.
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Comparison of lost fast-ion between the Numerical FILD and Lost fast-ion

Lost co-going fast-ion
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ODuring AE burst, fast ion with lower energy(~100 keV) than
Injection energy (~180 keV) was detected by numerical FILD.
OThe main component of lost co-going fast-ions at the loss

boundary are the particles with E< 50 keV. 20



. Summary

OMEGA is applied to the Large Helical Device experiments with the realistic
condition close to the experiment.

O Fast ion driven instabilities and lost fast ion properties are investigated.
O Lost fast ion velocity distribution in the simulation is compared with the
FILD measurement.

@®The increment of the fast ion loss rate is proportional to
the square of AE amplitude.

@ The velocity space region of lost fast ions calculated by
MEGA is close to the lost fast ion measurements by FILD.

@®Lost fast-ion at the FILD are different from those at the
divertor region.

-During AE burst, fast ion with lower energy than injection energy was
detected by numerical FILD.

- The main component of lost co-going fast-ions at the loss boundary are
the particles with E< 50 keV. 21




