Simulations of Alfvén Eigenmode Destabilized by Energetic Electrons and Energetic Electron Effects on Energetic-Ion Driven Alfvén Eigenmode

Jialei WANG^{1,2}, Yasushi TODO², Hao WANG², Zheng-Xiong WANG¹

¹School of Physics, Dalian University of Technology, Dalian, China

²National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Japan

16th Technical Meeting on Energetic Particles in Magnetic Confinement Systems — Theory of Plasma Instabilities

(September 3-6 2019, Shizuoka City, Japan)

Outline

Introduction

Simulation model (MEGA code)

Numerical results

- Destabilization mechanism of Alfvén eigenmodes (AEs) by energetic electrons
- Energetic electron effects on energetic ion driven
 TAE

AEs driven by energetic electrons in experiments

Energetic electron (EE) driven AE, like TAE, BAE, were observed in many devices during high power LHW and ECW experiments.

- The destabilized mode can propagate in both ion and electron diamagnetic directions.
- Considering interactions between EEs and AEs, could EEs also affect TAE driven by energetic ions?

Physical model

Bulk plasma (Fluid)

$$\begin{aligned} \frac{\partial \rho}{\partial t} &= -\nabla \cdot (\rho \mathbf{v}) + \nu_n \Delta (\rho - \rho_{eq}), \\ \rho \frac{\partial}{\partial t} &= -\nabla \cdot (\rho \mathbf{v}) + \nu_n \Delta (\rho - \rho_{eq}), \\ \rho \frac{\partial}{\partial t} &= -\rho \boldsymbol{\omega} \times \mathbf{v} - \rho \nabla (\frac{v^2}{2}) - \nabla p + (\mathbf{j} - \mathbf{j}'_h) \times \mathbf{B} \\ -\nabla \times (\nu \rho \boldsymbol{\omega}) + \frac{4}{3} \nabla (\nu \rho \nabla \cdot \mathbf{v}), \\ \frac{\partial \mathbf{B}}{\partial t} &= -\nabla \times \mathbf{E}, \\ \frac{\partial p}{\partial t} &= -\nabla \cdot (p \mathbf{v}) - (\gamma - 1) p \nabla \cdot \mathbf{v} + (\gamma - 1) \\ \times [\nu \rho \omega^2 + \frac{4}{3} \nu \rho (\nabla \cdot \mathbf{v})^2 + \eta \mathbf{j} \cdot (\mathbf{j} - \mathbf{j}_{eq})] + \nu_n \Delta (p - p_{eq}), \\ \mathbf{E} &= -\mathbf{v} \times \mathbf{B} + \eta (\mathbf{j} - \mathbf{j}_{eq}), \\ \mathbf{\omega} &= \nabla \times \mathbf{v}, \\ \mathbf{j} &= \frac{1}{\mu_0} \nabla \times \mathbf{B}, \end{aligned}$$

$$\mathbf{u} = \mathbf{V}_{\parallel} + \mathbf{v}_E + \mathbf{v}_B, \\ \mathbf{v}_{\parallel} &= \frac{v_{\parallel}}{B^*} (\mathbf{B} + \rho_{\parallel} B \nabla \times \mathbf{b}), \\ \mathbf{v}_E &= \frac{1}{B^*} (\mathbf{E} \times \mathbf{B}), \\ \mathbf{v}_E &= \frac{1}{B^*} (\mathbf{E} \times \mathbf{B}), \\ \mathbf{v}_E &= \frac{1}{Z_h e B^*} (-\mu \nabla B \times \mathbf{b}), \\ \mathbf{v}_B &= \frac{1}{Z_h e B}, \\ \mathbf{b} &= \mathbf{B}/B, \\ \mathbf{b} &= \mathbf{B}/B, \\ \mathbf{b} &= \mathbf{B}/B, \\ \mathbf{b} &= \mathbf{B}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}/B, \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \\ \mathbf{b} &= \mathbf{b}(1 + \rho_{\parallel} \mathbf{b} \cdot \nabla \times \mathbf{b}), \end{aligned}$$

Energetic particle (drift kinetic)

Only n = 4 harmonic of the hot particle current is retained in simulations.

- Maxwellian distributions are used for both EEs and EIs.
- > The of grid points is $(128 \times 16 \times 128)$ in cylindrical coordinates (R, ϕ, Z) .
- > The number of marker particles is 2.1×10^6 .

Equilibrium profiles

A central-peaked profile (blue curve), which is similar to EI beta profile (red curve), and an off-axis peaked profile (yellow curve) were adopted as EE beta profiles.

Outline

>Introduction

Simulation model (MEGA code)

Numerical results

 Destabilization mechanism of Alfvén eigenmodes (AEs) by energetic electrons

Energetic electron effects on energetic ion driven
 TAE

>Summary

TAE driven by EEs with central-peaked profile

- > TAE can be destabilized by energetic electrons (EEs).
- TAE propagates in the electron diamagnetic drift direction with a central peaked EE beta profile.

Mode frequency dependence on EE energy

> Mode frequency increases with the increase of EE energy.

> The mode is stable at T_{EE} =0.1 due to the strong continuum damping.

Resonance condition: $\omega - \mathbf{L} * \omega_{\theta}(\mu, E, P_{\varphi}) - n * \omega_{\phi}(\mu, E, P_{\varphi}) = 0$

- > A few Passing EEs located around rational surfaces with $L = \pm 5$ and $L = \pm 6$ are resonating with TAE.
- Deeply trapped EEs at a wide range of minor radius are resonating with TAE through precessional resonance with L=0.

Energy transfer from EEs to wave mainly from trapped EEs

Trapped EEs dominate the mode destabilization.

- Resonance of passing EEs mainly occurs around rational surfaces, but the net energy transfer from these resonant particles is very small.
- > Passing EEs will be more important in a weak shear case.

Positive frequency AE driven by EEs with off-axis EE profile

The AE (EAE) destabilized by EEs with positive frequency is observed at positive spatial gradient of EE distribution function in a weak shear configuration.

Energy transfer from EEs to EAE

- The EAE with positive frequency is driven by passing and barely trapped EEs.
- > Particles around passing-trapped boundary transfers more energy.

Outline

> Introduction

Simulation model (MEGA code)

Numerical results

 Destabilization mechanism of Alfvén eigenmodes (AEs) by energetic electrons

- Energetic electron effects on energetic ion driven TAE

- EE with central-peaked profiles
- EE with off-axis peaked profiles

> Summary

EE with central-peaked profile affect TAE frequency and growth rate

- > No significant stabilization is observed.
- > Increasing EE beta will decrease TAE frequency.
- Further increasing EE beta will change to an EE driven mode with negative mode frequency and a larger growth rate.

Change of resonance condition may lead to a larger γ_L

 20×10^{-8}

Α

EE beta : $\beta_{\text{EE}}(A) < \beta_{\text{EE}}(B) < \beta_{\text{EE}}(C)$

to a larger linear growth rate due to the change of mode frequency.

Energetic electron effects on Alfvén eigenmodes

-2₀

0.2

0.4

0.6

 \mathbf{r}/\mathbf{a}

·m≠3

m=4

-m=5

·m=6

m=7

-m=8

-m=9

-m=10

 $\frac{n=4}{m\neq 3}$

-m=4 -m=5 -m=6

-m=7

-m=8

-m=9

-m=10

0.8

0.8

2.5

1.5

0.5

2.5

1.5

0.5

Outline

> Introduction

Simulation model (MEGA code)

Numerical results

Destabilization mechanism of Alfvén eigenmodes (AEs)
 by energetic electrons

- Energetic electron effects on energetic ion driven TAE

- EE with central-peaked profiles
- EE with off-axis peaked profiles

> Summary

- > EEs with off-axis peaked profile can significantly stabilize EI driven TAE.
- Kinetic effect of EEs contributes little to the mode stabilization.
- The stabilization mainly comes from the pressure gradient of EE profile.

Spatial profiles of n=4 TAE

- Inclusion of kinetic EEs or fluid EE beta profile shows almost the same mode structures.
- ➤ m=6 harmonic is significantly damped, while m≥7 harmonics are almost fully suppressed.

Decrease of driving rate lead to stabilization (r_h =0.43)

II. β_{EE}=1.0%; $ω_o/ω_A = 0.362$ $\gamma_L/ω_A = 0.0133$ ($\delta \gamma_L$: - 0.0155)

 $\gamma_{\rm h}/\omega_{\rm A}$ =0.0271 ($\delta \gamma_{\rm h}$: - 0.0132)

I. β_{EE} =0.0%; $\omega_o/\omega_A = 0.359$ growth rate: γ_L/ω_A =0.0288 driving rate: γ_h/ω_A =0.0403 damping rate: γ_d/ω_A =0.0128

The dominant stabilizing effect of TAE is from the decrease of EP driving rate, rather than the significant increase of damping rate.

Both positive and negative pressure gradient have a stabilizing effect on TAE.
 Energetic electron effects on Alfvén eigenmodes
 19

Effects of different EE beta profile locations on EI driven TAE

- > An obvious suppression of EI driven TAE is observed when the peaked location of EE beta profile r_h is inside the mode region.
- The strongest suppression will be achieved with a slight shift of r_h from the mode center.
- ➤ TAE frequency decreases firstly and then increases, when r_h moves outward.
 Energetic electron effects on Alfvén eigenmodes
 20

Sub-dominant poloidal harmonics appears for $r_h = 0.54$

- When r_h further moves outward from the mode center, m=6 harmonic will be strongly damped.
- A mode with dominant harmonics m=4 and m=5 appears in the core region, which is out of strong EE pressure gradient region.

Summary

Interactions between EEs and AEs were investigated using a hybrid code MEGA.

♦ We clarified the destabilization mechanism of AEs by EEs:

- Trapped EEs dominate the TAE destabilization through precession drift resonance with L=0. A few passing EEs located closely to the rational surface can resonate with the mode.
- In a weak shear configuration, passing EEs will be important and can destabilize some AEs.

◆ EE effects on EI driven TAE were also presented:

- An obvious stabilizing effect was found when an off-axis peaked EE beta profile was applied inside the mode region.
- The stabilization mainly comes from the EE pressure gradient, rather than kinetic effects of EEs.
- > A positive (negative) ∇P_{EE} at the mode center will increase (decrease) the TAE frequency for a monotonic q-profile.

Thank you for your attention!

BACKUP SLIDES

Properties of trapped EEs in driving negative frequency TAE

- Deeply trapped EEs are most important resonant particles.
- > Kinetic energy of these resonant particles is 0.4~0.6 $[m_D V_A^2]$, or an equivalent speed from 54~66 $[V_A]$.

Saturation level of EE driven TAE

- Saturation levels are similar for EE and EI driven TAE with the same isotropic Maxwellian distributions.
- Bounce frequencies of trapped EI, passing EI and trapped EE are different for the same mode amplitude: ω_b(EI_{TP}) < ω_b(EE_{TP}) < ω_b(EI_{PP})

EE effects on n=12 TAE driven by EIs

- The dominant poloidal harmonics of n=12 El driven TAE are m=14 and 16.
- > Conclusions are similar to EE effects on n=4 EI driven TAE.