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AEs driven by energetic electrons in experiments
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> Energetic electron (EE) driven AE, like TAE, BAE, were observed in

many devices during high power LHW and ECW experiments.

> The destabilized mode can propagate in both ion and electron
diamagnetic directions.

> Considering interactions between EEs and AEs, could EEs also
affect TAE driven by energetic ions?
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Physical model
Bulk plasma (Fluid)
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Energetic particle (drift kinetic)
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> Only n =4 harmonic of the hot particle current is retained in simulations.

> Maxwellian distributions are used for both EEs and Els.
> The of grid points is (128%x16Xx128) in cylindrical coordinates (R, ¢, Z).

> The number of marker particles is 2.1x106°.
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Equilibrium profiles
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> A central-peaked profile (blue curve), which is similar to El beta

profile (red curve), and an off-axis peaked profile (yellow curve)

were adopted as EE beta profiles.
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TAE driven by EEs with central-peaked profile

TAE spatial profiles
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Alfvén continuous spectra
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> TAE can be destabilized by energetic electrons (EEs).

> TAE propagates in the electron diamagnetic drift direction with a

central peaked EE beta profile.
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Mode frequency dependence on EE energy
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> Mode frequency increases with the increase of EE energy.

> The mode is stable at Tgg=0.1 due to the strong continuum

damping.
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Resonance condition: w — L * wg(p, E,P,) —n * wy(p, E,P,) = 0

Passing EEs 4-5/4 q=6/4
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> A few Passing EEs located around rational surfaces with L = +5 and

L. = 46 are resonating with TAE.

> Deeply trapped EEs at a wide range of minor radius are resonating
with TAE through precessional resonance with L=0.
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Energy transfer from EEs to wave mainly from trapped EEs
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> Trapped EEs dominate the mode destabilization.
> Resonance of passing EEs mainly occurs around rational surfaces, but

the net energy transfer from these resonant particles 1s very small.
> Passing EEs will be more important in a weak shear case.
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Positive frequency AE driven by EEs with off-axis EE profile
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> The AE (EAE) destabilized by EEs with positive frequency is
observed at positive spatial gradient of EE distribution
function in a weak shear configuration.
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Energy transfer from EEs to EAE
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> The EAE with positive frequency is driven by passing and barely
trapped EEs.
> Particles around passing-trapped boundary transfers more energy.
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EE with central-peaked profile affect TAE frequency and growth rate

0.4 [ 0.08
:« —‘___.""\cu i
B - R
3 0.2; /1006 3
S ' A ] S|
3 o
L / 4 g
> 0f - 4 10.04 =
= . B C ' . —
% ,A——""-—A-_E_,—A, s
S A .- |3
= 0.2 *--%.02 2
. El driven modes EE driven)modes
¥V, | owwws Fwwws POvE Peve P > FETTS S Hﬁo
0O 05 1 15 2 25 3 35 4

BeE |70
> No significant stabilization is observed.

> Increasing EE beta will decrease TAE frequency.

> Further increasing EE beta will change to an EE driven mode with
negative mode frequency and a larger growth rate.
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Change of resonance condition may lead to a larger y;
EE beta :
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to the change of mode frequency.
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EE with off-axis peaked profile stabilizing El driven TAE
Kinetic energy evolution of n=4 Evolution of energy transfer
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> EEs with off-axis peaked profile can significantly stabilize El driven TAE.
> Kinetic effect of EEs contributes little to the mode stabilization.

> The stabilization mainly comes from the pressure gradient of EE
profile.
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Spatial profiles of n=4 TAE
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> Inclusion of kinetic EEs or fluid
EE beta profile shows almost the
same mode structures.

> m=6 harmonic is significantly
damped, while m>7 harmonics
are almost fully suppressed.
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Decrease of driving rate lead to stabilization (1}, =0.43)
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> The dominant stabilizing effect of TAE is from the decrease of EP driving

rate, rather than the significant increase of damping rate.
> Both positive and negative pressure gradient have a stabilizing effect on TAE.
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Effects of different EE beta profile locations on El driven TAE
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> An obvious suppression of El driven TAE is observed when the peaked
location of EE beta profile ry, is inside the mode region.

> The strongest suppression will be achieved with a slight shift of ry, from the
mode center.

> TAE frequency decreases firstly and then increases, when r; moves
outward. Energetic electron effects on Alfvén eigenmodes 20



Sub-dominant poloidal harmonics appears for r;, = 0. 54

TAE spatial profiles OYn = VYl = 0.54]
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> When ry, further moves outward from the mode center, m=6 harmonic will
be strongly damped.

> A mode with dominant harmonics m=4 and m=5 appears in the core region,
which is out of strong EE pressure gradient region.
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Summary

® Interactions between EEs and AEs were investigated using a
hybrid code MEGA.

& We clarified the destabilization mechanism of AEs by EEs:

> Trapped EEs dominate the TAE destabilization through precession
drift resonance with L=0. A few passing EEs located closely to the
rational surface can resonate with the mode.

> In a weak shear configuration, passing EEs will be important and
can destabilize some AEs.

& EE effects on El driven TAE were also presented:

> An obvious stabilizing effect was found when an off-axis peaked
EE beta profile was applied inside the mode region.

> The stabilization mainly comes from the EE pressure gradient,
rather than kinetic effects of EEs.

> A positive (negative) VPgg at the mode center will increase
(decrease) the TAE frequency for a monotonic g-profile.
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Thank you for your attention!
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Properties of trapped EEs in driving negative frequency TAE

Pitch angle dependence Particle energy dependence

for trapped EEs (n=4) for trapped EEs (n=4)
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> Deeply trapped EEs are most important resonant particles.

> Kinetic energy of these resonant particles is 0.4~0.6 [mpV£], or an
equivalent speed from 54~66 [V, ].
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Saturation level of EE driven TAE
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> Saturation levels are similar for EE and El driven TAE with the same
isotropic Maxwellian distributions.
> Bounce frequencies of trapped El, passing El and trapped EE are
different for the same mode amplitude: wy(Eltp) < wp(EETp)< wy, (Elpp)
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EE effects on n=12 TAE driven by Els

EE beta profiles with different

peaked locations 1y,
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> The dominant poloidal harmonics of n=12 El driven TAE are
m=14 and 16.
» Conclusions are similar to EE effects on n=4 El driven TAE.
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