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Background

* Alfven ElgeandeS (AES) are shot #176042 CO2 Interferometer  log,o(P')

driven unstable by ~80kV beams 300
in DIII-D 250
200
: L 150
 They cause fast ion transport and =
N o 100
reductions in performance
50
0]
* Godal is to understand: 5 20f e
— : ical prediction
— Modes 515;_ (TRANSP)
. T 10F
— Mode drive § 5E nngﬁﬁg%rreeﬂe
. . . 3 OF . _ _ _
— Saturation (how amplitude is set) = "0 1000 2000 3000 4000 5000
— Impact on fast ion profile Time (ms)

— How to conftrol
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Background

e Alfvén Eigenmodes (AEs) are

. shot #176042 CO2 Interferometer  log,,(P"?)
driven unstable by ~80kV beams 300 -
in DIII-D 250
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N . 100
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* Goal is to understand: 5 20f e
— : ical prediction
— Modes 5 15F (TRANSP)
i T 10F
— Mode drive S 5k measured
. . . *E_-,‘)' 0 g . . . neutron r.ate
— Saturation (how amplitude is set) = "0 1000 2000 3000 4000 5000
— Impact on fast ion profile Time (ms)

— How to confrol A |ot of effort over the
last 10 years has been
focused on these
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Background

e Alfvén Eigenmodes (AEs) are

. shot #176042 CO2 Interferometer  log,,(P"?)
driven unstable by ~80kV beams 300 -
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test details of drive
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Beam Modulation Can Have Significant

Implications for AE Drive!?2

e Constant beams have nice slowing down
distribution function
— This is or Maxwellian is often assumed in
theory | |

Steady Tangential NBI

S
>
=
2
o
20 40 60 80 100
E (keV)
Time

DIII=D) . Vs Belikov and O.A. Silivra, NF 34 1522 (1994)
6 M g Y 2. Y. Kolesnichenko, V.v. Lutsenko, NF (In Submission)



Beam Modulation Can Have Significant

Implications for AE Drive!?2

e Constant beams have nice slowing down
distribution function

— This is or Maxwellian is often assumed in 2ms after Tangential NBI turn-on,
theory s 0m————10ms on/off period

|

e Beam modulation transiently creates
bump-on-tail velocity distribution that can 0.5

drive modes S | \
> | |
e Modulation period changes bump-on-tail £ 00 : ;
feature a | Bump-on-Tail
— Often chosen arbitrarily or for 0.5 | |
diagnostics, NOT physics N TRANSP. FUII E only'
20 40 60 80 100
E (keV)
Time
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Beam Modulation Can Have Significant

Implications for AE Drive!-2

e Constant beams have nice slowing down
distribution function 2ms after Tangential NBI turn-on,

Tangential and Perp NBI
Interleaved 10ms on/off period

— This is or Maxwellian is often assumed in
theory 1.0

e Beam modulation transiently creates
bump-on-tail velocity distribution that can 0.5

drive modes 3
S
e Modulation period changes bump-on-tail & 00
feature a
— Often chosen arbitrarily or for -0.5 | |
diagnostics, NOT physics N TRANSP, Full E only

e For Interleaved beams, the time- 20 40 60 80 100
dependent beam mix depends on E (kev)

modulation period
Pnei
e In this experiment, vary modulation period

to investigate impact on AEs - Do we see a Time
change in drive from these effects?

DIII=D) . Vs Belikov and O.A. Silivra, NF 34 1522 (1994)
8 M g Y 2. Y. Kolesnichenko, V.v. Lutsenko, NF (In Submission)



Experiment background and
measurements of the impact of beam
modulation period on AEs

e Analysis of the bump-on-tail contribution

to AE drive in expt.

— Imaging Neutral Particle Analyzer (INPA)
measurements

— TRANSP and Kick Modeling
— MEGA Modeling

 Measurements of TAE growth and

saturation during individual beam pulses
— Large amplitude oscillations
— Variation in saturation with drive and drag

— Turbulence measurements during TAE
saturation
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 Experiment background and
measurements of the impact of beam
modulation period on AEs
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Experiment Scans Interleaved Beam Modulation

Period to Investigate Impact on AEs

 Standard L-mode DIil-D current
ramp scenario

— Multiple AEs g
 Diagnostic beam fixed at 55kV >
« 80kV Tangential and 75kV g
Perpendicular beam modulated g
out of phase "
— Vp/VA~0.3-0.4
* Modulation period varied 100 , 12
from 7ms on/off to 30 ms S 80F AL :
on/off then steady ¢ eof I
— Typical slowing down § 40 :
tfime from 80kV to 50kV w20y

~ 20ms

Impact on modesand ./
fastions documented
cal

300 400 500 600 700 800
Time (ms)
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The Distribution Function Evolution Varies Significantly

with Modulation Period

e The overall fime-
averaged dist. function
is similar for all
modulation periods
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The Distribution Function Evolution Varies Significantly

with Modulation Period

e The overall fime-
averaged dist. function
is similar for all
modulation periods

Pitch (VII/V)

 Largest variation is at

highest energies 3
* Injected pitch changes E
with beam w o 10 20 30 40 50 Ti Iﬁg (m;c)) 80 90 100 110 120
 For shorter mod. Time Averaged Dist. Function
periods (~12ms), S 12ms on/off
positive dF/dE is ' (arb)
always present above 5
60kV 0 4
= 3
% 0.0 5
e 1
0.5 0

-1.0

i 20 40 60 80
DIlI-D 0
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The Distribution Function Evolution Varies Significantly

with Modulation Period

e The overall fime-
averaged dist. function
is similar for all
modulation periods

0.8 F

0.6

Pitch (VII/V)

0.4

0.2

= 60
65 70 _.76= 80 60 65
- EkeV)

70 75 80
E (keV)

 Largest variation is at
highest energies

100FTan :

* Injected pitch changes
with beam

Epeam (keV)

0 10 20 30 40 50 60 70 80 90 100 110 120

e For shorter mod.
periods (~12ms),
positive dF/dE is
always present above
60kV

Pitch (VII/V)

*  For longer mod. o oS TR
periods (~30ms) 5100 Pero. 1
becomes slowing T on/off
5 NBI
down before end of 8

0 10 20 30 40 50 60 70 80 90 100 110 120
pulse Time (ms)
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Unstable AE Specira Changes With Modulation Period

CO2 Interferometer

e Density and current ¥ 7ms on/off . ™ 12ms on/off

profile evolution well- 120 R TS 100 BB ARE
matched <12 A120
Z1 ‘ JOO

e CO2 interferometers
give broad overview of
activity

|
80|
|

[NE T ...

i

* From 7ms to steady

160 -4.8
tangential beam, mix 1
of RSAE and TAE _1 52
changes to primarily Z
TAE )
- Same time averaged il o] NBI
power for all 400 600 800 1000 400 600 800 1000

modulation cases Time (ms) Time (ms)
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At Large Radii, TAEs are Dominant and Persistence

Depends on Modulation Period

Electron Cyclotron Emission

140|
* Multiple TAEs unstable in all g
cases ‘5100
- n~3-5 s |
4 60
* TAEs persist in 12ms on/off I

and steady beam cases
140| p~0 6 0. 8 30ms on/off

e TAEs intermittent and
weaker for 30ms on/off
period

Frequency (kHz)

e TAEs strongest for steady
tangential beam

e Modulated TAE and 0
contributions to drive will be i‘;
looked at in detail in next o
section of talk %’.

i

Time (ms)



At Inner Radii, RSAEs Dominant for Short Modulation

Periods But Shift o BAEs For Longer

Electron Cyclotron Emission

] p~0.2-0.4, 12ms on/off

* 12 ms on/off, multiple RSAEs

and some indication of BAEs él:f
=100

30 ms on/off and steady g
tangential beam case have § 60

weak RSAE and dominant BAE I

e Shiftin spectrum is NOT
currently understood

— Matched density, current,
etfc.

— Te higher in BAE cases

Frequency (kHz)

e BAE dependence on beam
and plasma parameters

discussed in detail this 3::,
afternoon (Heidbrink, I-5) g
— BAE favors tang. beam %

Time (ms)



AE Impact on Fast lon Confinement Also Depends

on Modulation Period

 AE amplitude is integrated power in
AE freq. band

— 30 ms on/off has lowest overall g oS :AE Power
amplitudes g 03
* Neutron emission and stored energy 502 12 ms on/oft
compared to classical TRANSP < oo Steady Tang.
calculations 8 19FNeutrons ]
- A deficit indicates fast ion § o
fransport E °-4§‘ 12 ms on/off‘;
* All conditions have relatively large £ o02f 30 ms on/off
initial fast ion deficits then become 2 oot Steady Tang.
classical by t=1100ms 5 [ Stored Energy
* 30 ms on/off has least fast ion transport & - ;
 All pretty similar despite large % 04f 12 ms on/off
difference in AEs = critical gradient- = | | %‘;’e’;‘é‘f?éﬁg.‘;
like behavior* 400 600 800 1000

Time (ms)

18 TSR «6 s, Collins, et.al. PRL, 116, 095001 (2016)



e Analysis of the bump-on-tail contribution
to AE drive in expt.

— Imaging Neutral Particle Analyzer (INPA)
measurements

— TRANSP and Kick Modeling
— MEGA Modeling

Dili-D
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The TAEs At Large Radius Are Driven Preferentially

During Tangential Beam Pulses

e At eachTang. beam pulse,
one or more TAEs unstable

* INPA probes local fast ion
density (ng) near tangential
beam pitch at TAE radius

— Wil use as proxy for
radial gradient in local
fast ion density

— Dedicated INPA talk

Frequency (kHz)

_Tang. NBI _Perp. NBI

1.0F — Friday (X.D. Du, I-15)
0.85 INPA 60-8DkV E
0.4 n E
0.2F - / \L/ k
0.0F . . . . ]
400 500 600 700 800 900
Time (ms)
Din-o



The TAEs At Large Radius Are Driven Preferentially

During Tangential Beam Pulses

e At eachTang. beam pulse,
one or more TAEs unstable

* INPA probes local fast ion
density (ng) near tangential
beam pitch at TAE radius

— Wil use as proxy for

radial gradient in local
fast ion density

— Dedicated INPA talk
Friday (X.D. Du, I-15)

Frequency (kHz)

Jang. NBI_Perp. NB

1.0K
: INPA 60-8DkV: 1 .

: Modes driven unstable after
I ] E beam turn-on once ngp
\ [ /\\/V E increases and stabilized

N . when ngpreturns to that level

460 560 1600 760 860 900 ° As Qmin drops,TAE is harder to
Time (ms) drive and unstable at
increasingly higher ngp
— Stability scan w/ gmin




For Short Modulation Periods Majority of TAEs Remain

Unstable Between Tangential Beam Pulses

* Mode amplitudes still
clearly peak during
tangential beam pulses

 INPA measured 60-80kV
tangential beam ion
density doesn’t plateau at
each pulse like 30ms
on/off

Frequency (kHz)

_Tang. NBl Perp. NBI

o A AN
Dlli-D



For Short Modulation Periods Majority of TAEs Remain

Unstable Between Tangential Beam Pulses

e Mode amplitudes still
clearly peak during
tangential beam pulses

 INPA measured 60-80kV
tangential beam ion
density doesn’t plateau at
each pulse like 30ms
on/off

Frequency (kHz)

_Tang. NBl Perp. NBI

1.0 weati - T Range of ng less than for
"”"":kp VIO nmnFe long 30ms on/off

\|

400 500 600 700 800 900 .
Time (ms) e More persistent modes

INPA Envelope can lead to more transport

30ms on/off .
— Even with same avg.
Dill-D injected power

o ¢
N
b

\ ’\/\/\/\/\/\/Y\/\N\A@ g e actamen

pulses to stabilize TAE




TAE Amplitude Evolution During a Tangential Beam

Pulse Indicates Energy Gradient Not Primary Drive

t=615ms

1.0
0.8
0.6
!

0.4

Pitch (V)1 /V)

0.2

. 0.0
60 65 70 75 <80 60 65

I 70 80 _
E (keV) N N | E(keV) -

1

T

Distribution function
evolution analyzed
near TAE location

ng = local fast ion
density (60-80kV) in
pitch range populated
by tangential beam

dF/dE is max over
energy and pitch range



TAE Amplitude Evolution During a Tangential Beam

Pulse Indicates Energy Gradient Not Primary Drive

t=615ms _ t=627ms  Distribution function
evolution analyzed
near TAE location

* ng =local fastion
density (60-80kV) in
pitch range populated
by tangential beam

Pitch (V)1 /V)

e dF/dE is max over
energy and pitch range

e TAE amplitude evolution
follows ng closely

— Doesn’t begin to
decay until beam

turn-off
580 600 620 640 660
Time (ms)
DilI-D



Pitch (V)1 /V)

TAE Amplitude Evolution During a Tangential Beam

Pulse Indicates Energy Gradient Not Primary Drive

t=603ms

t=615ms

t=627ms

Distribution function
evolution analyzed
near TAE location

ng = local fast ion
density (60-80kV) in
pitch range populated
by tangential beam

dF/dE is max over
energy and pitch range

TAE amplitude evolution
follows ng closely
— Doesn’t begin to
decay until beam
turn-off

is not unstable until
after max dF/dE



TRANSP Kick Model* Used to Calculate Energy

Exchange With TAE For Different Beam Sequences

TAE f=95.104 kHz, n=3, m=7..30

Eigenmodes calculated with NOVA

— n=3 TAE identified with localization
and frequency similar to expt.

* Kick probabilities (phase space
dependent energy exchange) calculated

Displacement (arb)

with ORBIT RMS Energy Transfer Rate
: : : A TAE e
e Kick model in TRANSP follows beam ion 1.2; o ]
energy exchange with mode in fixed wosl rl?;'::é for
equilibrium 10_4: (AEAPLIE.P iy
— Mode set to low amplitude 3 \
. . 0.0t— : : ' ' l
e Beam programming varied: 1.0 0 1.0

— Steady tangential beam
— Steady perpendicular beam
— Interleaved 12ms on/off
— Interleaved 30ms on/off

02 Qe 2 o o =
coihd P o ™ O
e R e S

O e

Power to TAE'E

Ebeam (kev) Power to Mode (arb)
=
o

Bl
50 100 150 200 250 300
Time (ms)

o

27 w ey *Podesta, I-11, Kick Modeling, Thursday



Kick Model Calculations Show Variation In Power

Transfer To TAE For Different Beam Sequences

Kick Model, Avg. Power to n=3 TAE

)
* Tangential beam significantly more drive S 2
- H H S F Steady
than Perp. beam - consistent with data Sosf Tang PR
. *E - NB! 12ms 30ms
* Time avg. power fransfer for 12ms on/off B 4l ®  onjoff onloff
L] L] " '- S d
and 30ms on/off same - consistent with g ¢ Porp, 0 NB
small dF/dE role 2oot N
Beam Scenario

bii-o



Kick Model Calculations Show Variation In Power

Transfer To TAE For Different Beam Sequences

Tangential beam significantly more drive
than Perp. beam - consistent with data

Time avg. power transfer for 12ms on/off
and 30ms on/off same - consistent with
small dF/dE role

Power to mode coherently averaged over
multiple beam pulses to reduce noise

ssssss

Kick Model, Avg. Power to n=3 TA

o _ ]
= 1.2F
o 3
3 - Steady + +
= 08} Tang.
o r NBI
bt - 12ms 30ms
g 04k 4 on/off on/off
o I Steady NBI NBI
o L Perp.
:>:’ 0.0f NBl .

Beam Scenario

Coherent Avg., NBl Power to n=3 TAE
0.9 : ; : . :

Power to Mode (arb)

Tang. | Perp. | Tang.

0 10 20 30 40 50 60
Time (ms)




Kick Model Calculations Show Variation In Power

Transfer To TAE For Different Beam Sequences

Tangential beam significantly more drive
than Perp. beam - consistent with data

Time avg. power transfer for 12ms on/off
and 30ms on/off same - consistent with
small dF/dE role

Power to mode coherently averaged over
multiple beam pulses to reduce noise

12ms on/off power to mode increases
throughout tangential pulse then decays
during perp. beam

ssssss

Kick Model, Avg. Power to n=3 TAE

o
= 1.2F
o 3
3 - Steady
= 0.8 Tang. + +
o r NBI
p - 12ms 30ms
g 04k 4 on/off on/off
o I Steady NBI NBI
o L Perp.
:>:’ 0.0f NBl .

Beam Scenario

Coherent Avg., NBl Power to n=3 TAE
0.9 : : : : :

o
[

0.7 |
|

Power to Mode (arb

0 10 20 30 40 50 60
Time (ms)



Kick Model Calculations Show Variation In Power

Transfer To TAE For Different Beam Sequences

Tangential beam significantly more drive
than Perp. beam - consistent with data

Time avg. power transfer for 12ms on/off
and 30ms on/off same - consistent with
small dF/dE role

Power to mode coherently averaged over
multiple beam pulses to reduce noise

12ms on/off power to mode increases
throughout tangential pulse then decays
during perp. beam

30ms on/off power to mode rises rapidly
then decreases slightly (~5%) until steady
state

— Is small difference from peak
representative of dF/dE effectse

ssssss

Kick Model, Avg. Power to n=3 TA

Perp.

Q7 ]
= 1.2F

o 3

3 - Steady + +
= 08} Tang.

o} C NBI

bt - 12ms 30ms
g 04k 4 on/off on/off
5 Steady NBI  NBI
o

>

<

NBI
Beam Scenario

Coherent Avg., NBl Power to n=3 TAE
0.9 : ; : : :

Power to Mode (arb)

Power to Mode (arb)




MEGA* Calculations With Realistic Beam lon

Distribution Function Find TAE Similar to Experiment

1o MEGA Beam Dist. Func.

0.8

* MEGA run in delta-F mode with 0.8 }
functional form for beam-like s 3‘2‘
distribution function Z o
o -0.2

n=3 TAE found at same location o
and frequency as expt.

10 20 30 40 50 60 70 80 90 100
Energy (keV)

e Mode is unstable at measured
Beta-EP for tangential beam

1.0}

0.03

. n=3 TAE
Growth Rates

Consistent with expt., mode not

found for perpendicular beam at
2X Beta-EP

z(m)

0.0.-

0.0 05

15

1.0
B, (%)

Dili-D e
TIONAL FUS

3D MM SN *Y. Todo, NF 54 (2014) 104012




MEGA Used To Model Bump-On-Tail Effects on

AE Stability

MEGA Beam Dist. Func.

* Beam-like distribution modified .0 m With Bump-On-Tail
to include Bump-on-Tail 08
contribution o

e Bump-on-Tail parameterized by E
energy gradient and peak on 04

top of slowed down beam

10 20 30 40 50 60 70 80 90 100
Energy (keV)

 Mode stability calculated for
range of Bump-on-Tail
parameters

— Total fast ion pressure profile
fixed

20 40 60 80 100

DiINn-pD E (keV)
NATIONAL FUSION FACILITY



MEGA Shows Minor Impact Of Bump-on-Tail

Feature On TAE Stability

Mode Energy Evolution All Cases

12 — - - - 1
—1
e Very small (~5%) 10 3
. —4
change in growth 8 —5 _
rates over entire Se =3
parameter range 4| 2.
scanned 2| A
O Wy % 8 wo R
E(|=eV) 0 100 200 300
° Time (us)

* TAE still most Growlh Rates %) "
unstable mode for =5 p—
all cases g —3

€4 —4
— No RSAE or other = —5
core mode 23
8
5 2
Q
£
@ 1 % e
1 2 3 4 E (keV)
Bump-on-Tail Peak (arb)
Din-o



MEGA Shows Energy Exchange With TAE

Occurs At Highest Energies

Most efficient energy
exchange happens near
injection energy

Change in Fast lon Energy

Energy (keV)

D
o

00 05 10 15 20 25 3.0
Toroidal Canonical Ang. Momentum Pq,



MEGA Shows Energy Exchange With TAE

Occurs At Highest Energies

* Most efficient energy Change in Fast lon Energy x 1020
exchange happens near

131211 10 9 - {3

injection energy B oW, Fpw, = W,
12
 Energy gain/loss occurs 80
due to gradients across =
resonances < 60
>
o
u‘—: 40
20
00 05 10 15 20 25 3.0
Toroidal Canonical Ang. Momentum Pq,
Din-o



MEGA Shows Energy Exchange With TAE

Occurs At Highest Energies

* Most efficient energy
.e).(chgnge happens near o0 a0 s |5
injection energy MW, +pw,=w,,.

 Energy gain/loss occurs
due to gradients across
resonances

0o
o

Energy (keV)
()]
o

D
o

e Resonances near bump-
on-tail are parallel to
positive dF/dE gradient 20
no energy exchange

° Energy exchqnge due 00 05 10 15 20 25 3.0
. . Toroidal Canonical Ang. Momentum Pq,
primarily to dF/dP¢



 Measurements of TAE growth and
saturation during individual beam pulses
— Large amplitude oscillations
— Variation in saturation with drive and drag
— Turbulence measurements during TAE
saturation

DIlI-D
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Individual Tangential Beam Pulse Shows Mode Growth

and Saturation With Large Amplitude Oscillations

140 Magnetics OTgpr~bMs

Typically large Fourier windows 120 i,
used (~5ms) to reduce noise = 100 8 3 L
— ~500 waveperiods < Brangh TR
80
60|
400 500 600 700 800
Time (ms)




Individual Tangential Beam Pulse Shows Mode Growth

and Saturation With Large Amplitude Oscillations

Typically large Fourier windows
used (~5ms) to reduce noise

— ~500 waveperiods

 When Fourier window reduced Lo *F] |
(~0.5ms, 95% overlap) noise *‘ adnetic | ’w W W I‘ﬁf‘ il ‘:lﬂ H“ M‘ M
increases but growth and 120 31 FETCEY 'r“fw.rh' l,.J‘ h[ it it }” 11';‘r ,\. !
intermittent amplitude evolution g '.'j i ’, -l_i\f!iff'ﬂﬂ,liu':uﬁ~'T<','“' %‘ itk 1--‘:-,' ‘l llyn‘
become apparent = 1005 J ,. it 1 1 ir 'flr
B “" "",, \ mn" 1“‘.}‘1' bl iwi J' '
i

— Mode not visible in raw data 3 L
ﬂ. WM uﬂ“ ’[ %J%N 'i'u“" S(L‘ JLLMM
0

610 620 630 640 650

* Large (6A/A~75%) intermittent 5
amplitude oscillations

0
Time (ms)

3EFourier TAE Amplitude

— Period ~ 10-100 waveperiods 0.2 f~103kHz
* Frequency relatively steady g
of /t<2% @
0.0
o 2D o S ——

Time (ms)



TAE Growth During Tangential Beam Pulse Exploited To Test

Models for Mode Saturation

Expt. Approach

* Fix beginning phase until {=600ms pulse

\ 400 200 Jeoo 700 800 900
Time (ms)

I
Keep Same



TAE Growth During Tangential Beam Pulse Exploited To Test

Models for Mode Saturation

Expt. Approach

* Fix beginning phase until t=600ms pulse

e At single pulse, scan parameters
expected to modify mode saturation

(Drive, drag, scaﬂering) \ 400 500 Jéoo 700 800 950
. Time (mg)
— Drive: Add/Remove beam power Keep Same
— Drag: Add ECH at mode location Change Only
* Testif mode can be varied over range ek ﬁ%,ﬁ%{;ﬁﬁ. T 4
. . A )
of saturation scenarios ml? | .u ”H i }M! \ ;ﬂw l
. . N EL | b ' ,“ \ . |
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Multiple MHD and Turbulence Diagnostics
Were Positioned Exactly at TAE Location

e TAE mode structure and
evolution from:
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e Turbulence variation during
TAE saturation from: Beam
Emission Spectroscopy (BES),
Doppler Backscattering (DBS)
and Correlation ECE (CECE)
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Varying Drive and Scattering Leads to Different TAE
Saturation Behavior
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* Ref. Case: Larger amp. oscillations (6A/A) than target and multiple TAEs
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Varying Drive and Scattering Leads to Different TAE
Saturation Behavior
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* Ref. Case: Larger amp. oscillations (6A/A) than target and multiple TAEs

* Increased Drive (added 279 Tang. NBI): Higher amplitude and smaller 5A/A,
also, more frequent osc.
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Varying Drive and Scattering Leads to Different TAE
Saturation Behavior
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* Ref. Case: Larger amp. oscillations (6A/A) than target and multiple TAEs

* Increased Drive (added 279 Tang. NBI): Higher amplitude and smaller 5A/A,
also, more frequent osc.

* Reduced Drag (added ECH): Amplitude and 6A/A between other cases
and more frequent oscillations than ref. case

e Change in behavior can be directly compared to modeling for validation
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Conclusions

e Short beam modulation periods relative to the slowing down time can
create a persistent bump-on-tail feature

A DIII-D experiment which varied modulation period of different geometry
beams found significant differences in AE activity and EP transport for the
same time-averaged injected power

* Detailed analysis of an individual TAE using TRANSP, Kick Modeling and
MEGA found

— No strong role of energy gradient drive

— TAE modulation with interleaved beams likely pitch dependence
combined with slowing down of tangential beam between pulses

e At saturation, modulated TAEs were found to exhibit large (6A/A~75%)
infermittent amplitude oscillations with a periods ~ 10-100 waveperiods and
little or no chirping



