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Alfvén Eigenmodes (AEs) can cause undesirable

energetic particle (EP) transport

* In general, fast ion transport and confinement are important to the
heating efficiency of a device

e Fast lons that are lost to the wall increase the heat load applied to the
plasma facing surface, potentially causing damage

e Validation of AE driven transport in simulations is important in
preparation for future reactors

Modulated Fast Ion Transport
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Plasma simulations specifically require validation of

intermittent behavior
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Intermittency describes the
distribution of a data set
— In a time series, this can be thought of

“wild” random behavior generated
by non-Gaussian PDFs with fat tails [1]

One simple model of intermittent
behavior is the sandpile, in which
large avalanches redistribute the pile
to avoid special gradients that
exceed a threshold

Concentrated avalanches can
account for greater wall damage
than time averaged losses

— Understanding and modelling these
bursts can help protect future devices

[1] B. B. Mandelbrot, Fractals and Scaling in Finance



Fast lon diagnostics on DIlI-D show evidence of a

critical gradient in the EP pressure gradient

* FIDA, NPA, and neutron counting
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Shots in two experiments were designed to drive

multiple AE modes

* Low confinement (L-mode), inner wall limited, oval shaped
plasmas with reversed shear safety factor g were observed at
the end of the current ramp phase [1,2,3]
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[1] C.S. Collins, W.W. Heidbrink, M.Podestd, et al., Nucl. Fusion 57, (2017)
[2] C.S. Collins, W.W. Heidbrink, M.E. Austin, et al., Phys. Rev. Lett. 116 (2016)
[3] W.W. Heidbrink, C.S. Collins, M. Podesta, et. Al., Phys Plasmas, 24, (2017)



Fast lon Loss Detector (FILD) probes use magnetic field

to separate losses according to phase space locations

Fiber-Optic e FILD probes use an aperture
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e Light from the scintillator is
collected by a camera or
PMTs via fiber optics for
measurements

A\

( 1/ N v il
N a
5 ’;2( : | I

Ion Orbits Reaching Scintillator

A Midplane Probe (RO)
* Lower Probe (R-1)

vVBl

[1] R. K. Fisher, et al., Review of Scientific Instruments 81, 10D307 (2010)



Each PMT views a different section of phase space

e Both poloidal probe positions see avalanching in these
experiments

e Backlighting a FILD scintillator with fibers can be used to
determine phase space sensitivity

— Fibers from each detector sensitive to low energies (~40keV)
and moderate pitch angles (~55°) saw intermittent losses

— A midplane fiber centered on ~140keV at ~70° detected losses
similar fo the other midplane fiber during the first experiment
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CO2 and ECE measurements identify AE activity in

DIlI-D
159247 , t = 693.500 ms
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AE modes predicted to lead to avalanching when

overlapping occurs

* Intermittent transport due to the existence of multiple AEs has
been predicted by models for some time [1]

 More recent MEGA simulations by Y. Todo [2] have found
intermittent transport in the presence of TAEs and RSAEs

— Parficle trajectories in the presence of a single TAE were
followed to look at resonance overlapping
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[1] Berk H., Breizman B., Fitzpatrick J. and Wong H. 1995 Nucl. Fusion 35 1661
[2] Y. Todo et al 2016 Nucl. Fusion 56 112008



FILD probes measured two distinct types of

avalanching

e Losses at the midplane were characterized by groupings of 2-7
bursts in immediate succession
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159242 Midplane PMT data
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* Avalanches at the midplane were observed to be largest and most
frequent when modulated beams were active

* Intermittent activity is not modulated with the beams, but decays
when the beams turn off

— Groups of avalanches can be seen before beams turn on, even after
periods of quiet



AE modes follow pattern when midplane probe

sees losses
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Fourier analysis shows midplane losses resemble

TAE activity

e Shots with high beam power have losses that follow similar
frequency trends as the ~100 kHz AEs in the core
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The Hurst parameter of midplane losses correlates

with injected power

 The Hurst parameter [1] describes the correlation between time
steps in a series
— Larger Hurst exponents (0.5 < H < 1) correspond to higher correlations

* Loses from shots with more than
approximately 6 MW of NBI
power (large AE amplitude [2])
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[1] Mandelbrot, B. B., and Wallis, J. R. ( 1968), Water Resour. Res., 4( 5)
[2] W.W. Heidbrink, C.S. Collins, M. Podesta, et. Al., Phys Plasmas, 24, (2017)



High order moments capture strength of avalanching

behavior

* Midplane probe measurements clearly show avalanching
thresholds that likely correspond to critical gradient

— The threshold in injected power agrees with results for the Hurst

exponent
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Avalanching behavior relates to calculated

properties at gnin
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e Classical TRANSP runs were made to make more detailed

comparisons of shots
Increases in electron density and slowing down time near

dmin Poth correlate with increased avalanching

Larger gradients in beam g also increase intermittency
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The addition of ECH drastically reduces RSAE activity

e Even for shots with similar levels of injected beam power, the
AE spectrum with ECH is dominated by TAEs
— This change in AE activity is due to the local electron

temperature gradient increasing the RSAE frequency up to the
TAE frequency [1]

— Core TAEs remain present, but TAEs outside of gy i sSeem to
become more common
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[1] M.A. Van Zeeland, W.W. Heidbrink, S.E. Sharapov, et al., Nucl. Fusion 56, (2016)



ECH suppresses avalanching in lower probe

measurements

* While the midplane probe still sees intermittent avalanching
with ECH, bursts in the lower probe disappear almost entirely

e Orbit tfracking finds the trapped/passing boundary shifts with
ECH, potentially outside the sensitive region for the fiber

— It is also possible that the decrease in RSAE activity prevents
losses from occurring at all
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Summary and Future Work

e Fast lon Loss Detectors on DIlI-D show intermittent behavior
and avalanching that supports a critical gradient model

— Analysis suggests a threshold in beam power around 4-5 MW

* Midplane probe losses seem to be strongly connected to AE
activity in the core

— Resilience to RSAE amplitude reduction and spectra suggest this
is an essential part of this transport

e Avalanching in the lower probe disappeared with the
addition of ECH power near qy,in

— Research info how ECH affects these changes may lead to
methods of controlling some AE induced losses

* More information may be obtained by acquiring fluctuation
data for other EP diagnostics

— DIII-D working on upgrades to FIDA and INPA for these
measurements
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