Validation of the Imaging Neutral Particle Analyzer via Pitch Angle Scattering of Injected Beam Ions

by Daniel J. Lin¹

INPA is a powerful high resolution fast ion diagnostic

- INPA diagnostic
 - Covers broad range of phase space
 - Compact, good signal to noise
 - Fine energy and radial resolution as well as pitch acceptance
- Amazing applications from Xiaodi Du's talk on Friday (I-15)

Verify diagnostic with signals during classical fast ion behavior

- 1. What is an Imaging Neutral Particle Analyzer (INPA)
- 2. Testing INPA signals with pitch angle scattering
 - Experimental setup
 - Simulation procedure
- 3. Results
 - Comparing experiment w/simulation
 - Inferring edge neutral density
 - Diagnostic sensitivity on Zeff and density
 - Observations of strong passive signal
- 4. Summary

- Fast ions charge exchange with injected neutrals
 - NPA/INPA measures neutralized particle and its energy
- Resulting fast neutral can be born into an excited state
 - FIDA measures Doppler shifted photon from the visible Dα (656.1 nm) emission

INPA provides energy resolved radial profiles of confined⁵ fast ions

- Fast neutrals are ionized at stripping foils
- Strikes the phosphor before completing first gyro period
 - Gyroradius depends on particle energy
- Camera records light emitted from the phosphor

X. D. Du, Nucl. Fusion 58, 082006 (2018)

INPA measures neutralized fast ions along its line of sight

6

- Chords intersect at radius ~1.5 m to ~2.3 m at 2 cm below the midplane
- INPA designed to measure pitches $\zeta = v_{\parallel}/v \sim 0.77$
- Active measurements taken from both nearly-parallel (33lt) and nearly-perpendicular (33rt) neutral beams

INPA is installed inside the vacuum vessel for a broad radial view

- System is in vacuum vessel close to plasma to achieve desired view
- Passive emission can also come from edge regions but are heavily weighted towards closest region

7

Scattering affects the fast ion distribution function

• Drag:

$$\frac{1}{\tau_{se}}\frac{\partial}{\partial v}[(v^3+vc^3)f]$$

• Energy diffusion:

$$\frac{1}{2\tau_{se}}\frac{\partial}{\partial v}\left[\frac{v_e^2 m_e}{m_f} + \frac{v_c v_i^2 m_i}{v^3 m_f}\right]\frac{\partial f}{\partial v}$$

• Pitch angle scattering:

$$\frac{1}{2\tau_{se}}\frac{m_i}{m_f}\frac{Z_{eff}}{[Z]}\frac{v_c^3}{v^3}\frac{\partial}{\partial\zeta}[(1-\zeta^2)\frac{\partial f}{\partial\zeta}]$$

D. L. Jassby, Nucl. Fusion 17, 309 (1977)

Fast ion Distribution (steady state)

Vary pitch angle scattering by changing relative speed between fast ions and background electrons

Times with different ECH powers were selected

- Different ECH power affects electron scattering ($\alpha T_e^{-3/2}$)
- Density steadily increased and transitions to H-mode around 3800 ms
- Sawtooth instability with q=1 surface around 1.9 m (rho ~ 0.21)
 - Time averaged distribution function to mitigate impact

Density and electron temperatures varied

Fast ion distribution function obtained through TRANSP/NUBEAM

- NUBEAM models the heating sources and its deposition into the plasma
- Distribution function is time evolved through plasma collisions and reactions

FIDASIM simulates fast ion charge exchange

- Models spectroscopic features like beam, halo neutrals, visible bremsstrahlung, and FIDA emissions
- Calculates particles that pass through the diagnostic aperture and reach the detector
- More information about FIDASIM capabilities are presented by Alvin Garcia (P1-13)

The synthetic image of the INPA is calculated using INPASIM code

- Calculates the neutral interaction with stripping foil
- Traces ionized neutral orbit onto the phosphor
- Grids were created by using test particles with a given starting location and energy
- Both simulation and data are projected onto the radius and energy grid

Simulated neutron and FIDA signals are consistent with ¹⁴ experiment

 Simulated neutron rate from TRANSP agrees with the measurement

• EP profiles from FIDA are consistent with simulation by FIDASIM after passive correction

Slowing down and pitch angle scattering time varies with ECH power

- Scattering rates of electrons decrease with increasing temperature
- Fast ions that scatter off of thermal ions change their pitch angle
- Difference in slowing down to pitch angle scattering ratio indicates different distribution shape

Simulated signals are scaled to match uncalibrated experimental values

 b1 is fixed as it corresponds to the calibration

Passive simulation resolves some of the differences in signal

17

- Addition of passive signal increases the overall agreement with the experiment
- Inaccurate model of light emission at lower energy leads to overestimation in simulation
- Incorrect neutral density profile shape can possibly account for the other differences

Simulation with passive signals increase agreement with¹⁸ experiment

- Simulated counts from 4 different radii at 47 keV are compared to experimental counts at the same location for multiple similar time frames
- Addition of passive simulation increases the r^2 value from $r^2 = 0.66$ to $r^2 = 0.87$

Passive simulation accurately depicts changes in signal

- Temporal changes in simulation are compared to changes in experiment for 4 different radii at 47 keV
- Changes in simulated signal tracks well with changes in experiment
 - Slightly better agreement with addition of passive signals

Edge neutral densities inferred through coefficients

- Signal decreased with increasing density
 - SNR increased
- Error bars determined by simulation agreement with experiment
- Uncertainties in input profiles contribute to discrepancies

Uncertainties in input profiles can be a source of error

Observed strong passive signal correlates to the 210rt ²² counter beam

- Signal appears despite the lack of an active beam
 Magnitude of signal remains unchanged
- Appearance of the signals match with the timing and energy of the 210rt beam

Strong passive signal originates from trapped orbits from²³ 210rt beam that neutralize outside of the plasma

- 2 different regions are checked for comparison
 - Channel with signal (1): R = 1.63-1.73
 - Channel without signal (3): R = 1.91-2.01
- Simulated over 1e7 orbits (49-55 keV)
 - Channel 1: 953 possible orbits
 - Channel 3: 9 possible orbits
 - Does not account for reaction cross section
- Experimental signal (49–55 keV)
 - Channel 1: 3723 counts
 - Channel 3: 542 counts
 - Signals contain active and passive components

Strong passive signal originates from trapped orbits from²⁴ 210rt beam that neutralize outside of the plasma

- INPA is a novel diagnostic with high energy and radial resolution
- Simulated images with passive signals significantly improve agreement with experiment
- Changes in simulated signals match very well with changes in experimental signal
- Edge neutral densities can be inferred through simulation
- Prominent passive signals from trapped fast ions with edge neutrals are observed
 - Can potentially be used to diagnose edge fast ion distribution

