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INPA is a powerful high resolution fast ion diagnostic

• INPA diagnostic

– Covers broad range of 

phase space

– Compact, good signal 

to noise

– Fine energy and radial 

resolution as well as 

pitch acceptance

• Amazing applications 

from Xiaodi Du’s talk on 

Friday (I-15)
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Verify diagnostic with signals during 

classical fast ion behavior

INPA Scintillator Image



Outline

1. What is an Imaging Neutral Particle Analyzer 

(INPA)

2. Testing INPA signals with pitch angle scattering

– Experimental setup

– Simulation procedure

3. Results

– Comparing experiment w/simulation

– Inferring edge neutral density

– Diagnostic sensitivity on Zeff and density

– Observations of strong passive signal

4. Summary
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Fast ion charge exchange utilized for measurements

• Fast ions charge exchange 

with injected neutrals

– NPA/INPA measures 

neutralized particle and its 

energy

• Resulting fast neutral can be 

born into an excited state

– FIDA measures Doppler 

shifted photon from the  
visible Dα (656.1 nm)

emission
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NPA/INPA

FIDA



• Fast neutrals are ionized 

at stripping foils

• Strikes the phosphor 

before completing first 

gyro period

– Gyroradius depends on 

particle energy

• Camera records light 

emitted from the 

phosphor
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X. D. Du, Nucl. Fusion 58, 082006 (2018) 

INPA provides energy resolved radial profiles of confined 

fast ions



INPA measures neutralized fast ions along its line of sight

• Chords intersect at radius ~1.5 m to ~2.3 m at 2 cm 

below the midplane

• INPA designed to measure pitches ζ = v‖/v ~ 0.77

• Active measurements taken from both nearly-parallel 

(33lt) and nearly-perpendicular (33rt) neutral beams
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X. D. Du, Nucl. Fusion 58, 082006 (2018) 



INPA is installed inside the vacuum vessel for a broad 

radial view
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• System is in vacuum 

vessel close to plasma 

to achieve desired 

view

• Passive emission can 

also come from edge 

regions but are heavily 

weighted towards 

closest region

Bt

Ip



Scattering affects the fast ion distribution function

• Drag:
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• Pitch angle scattering:
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D. L. Jassby, Nucl. Fusion 17, 309 (1977)
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Vary pitch angle scattering by 
changing relative speed between 
fast ions and background electrons

INPA pitch

Fast ion Distribution (steady state)



Times with different ECH powers were selected

• Different ECH power affects 
electron scattering (α Te

-3/2)

• Density steadily increased 

and transitions to H-mode 

around 3800 ms

• Sawtooth instability with 

q=1 surface around 1.9 m 

(rho ~ 0.21)

– Time averaged 

distribution function to 

mitigate impact
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Density and electron temperatures varied
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Te

ne ni

Ti Zeff



Fast ion distribution function obtained through 

TRANSP/NUBEAM

• NUBEAM models the heating sources and its 

deposition into the plasma

• Distribution function is time evolved through 

plasma collisions and reactions
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TRANSP 

(NUBEAM)

THEORETICAL FAST-ION

DISTRIBUTION FUNCTION

F(E,p,r,z)

PLASMA PROFILES
ne, Te, Ti, q,

Vtor, nimp

THEORETICAL 
NEUTRON SIGNAL NEUTRON DATA



FIDASIM simulates fast ion charge exchange

• Models spectroscopic features like beam, halo neutrals, 

visible bremsstrahlung, and FIDA emissions

• Calculates particles that pass through the diagnostic 

aperture and reach the detector

• More information about FIDASIM capabilities are 

presented by Alvin Garcia (P1-13)
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Models beam & halo neutrals
Calculates VBE, cx probabilities, 

weight function, & active FIDA 
radiation using sightline geometry

THEORETICAL
NPA FLUX

THEORETICAL
Dα Radiance

FIDA DATA

NPA DATA



The synthetic image of the INPA is calculated using 

INPASIM code

• Calculates the neutral interaction with stripping foil

• Traces ionized neutral orbit onto the phosphor

• Grids were created by using test particles with a given 

starting location and energy

• Both simulation and data are projected onto the radius 

and energy grid
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Simulated neutron and FIDA signals are consistent with 

experiment
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• Simulated neutron rate 

from TRANSP agrees with 

the measurement

• EP profiles from FIDA are 

consistent with simulation 

by FIDASIM after passive 

correction



Slowing down and pitch angle scattering time varies 

with ECH power

• Scattering rates of electrons decrease with 

increasing temperature

• Fast ions that scatter off of thermal ions change their 

pitch angle

• Difference in slowing down to pitch angle scattering 

ratio indicates different distribution shape
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Simulated signals are scaled to match uncalibrated 

experimental values

• Difference in boxed regions 

are minimized to obtain 
coefficients (𝒃𝟏, 𝒃𝟐) for each 

contribution

• 𝒃𝟏 is fixed as it corresponds to 

the calibration
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𝒃𝟏 × 𝑨𝒄𝒕𝒊𝒗𝒆 𝒃𝟐 × 𝑷𝒂𝒔𝒔𝒊𝒗𝒆

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕

𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏

Active simulation Passive simulation



Passive simulation resolves some of the differences in 

signal

• Addition of passive signal increases the overall 

agreement with the experiment

• Inaccurate model of light emission at lower energy 

leads to overestimation in simulation

• Incorrect neutral density profile shape can possibly 

account for the other differences
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w/o passive simulation w/passive simulation

Simulation
Experiment



Simulation with passive signals increase agreement with 

experiment
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𝒓𝟐 = 𝟎. 𝟔𝟔
𝒓𝟐 = 𝟎. 𝟖𝟕

• Simulated counts from 4 different radii at 47 keV are 

compared to experimental counts at the same 

location for multiple similar time frames

• Addition of passive simulation increases the 𝒓𝟐

value from 𝒓𝟐 = 𝟎. 𝟔𝟔 to 𝒓𝟐 = 𝟎. 𝟖𝟕

Signal Comparison



Passive simulation accurately depicts changes in signal

• Temporal changes in simulation are compared to 

changes in experiment for 4 different radii at 47 keV

• Changes in simulated signal tracks well with 

changes in experiment

– Slightly better agreement with addition of passive 

signals
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2800 – 2200 ms

𝒓𝟐 = 𝟎. 𝟗𝟎
𝒓𝟐 = 𝟎. 𝟗𝟓



Edge neutral densities inferred through coefficients

• Signal decreased with increasing density

– SNR increased

• Error bars determined by simulation agreement with 

experiment

• Uncertainties in input profiles contribute to 

discrepancies
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Uncertainties in input profiles can be a source of error
21

• Slightly sensitive to Zeff and 

very sensitive to density

• Increasing(/decreasing) Zeff

scatters more(/less) fast ions 

out of INPA pitch range
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Observed strong passive signal correlates to the 210rt 

counter beam

• Signal appears despite the lack of an active beam

– Magnitude of signal remains unchanged

• Appearance of the signals match with the timing 

and energy of the 210rt beam

4520 - 4600 ms

30l: 81 keV
21r: 52 keV
33r: 65 keV
33l: 50 keV
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Strong passive signal originates from trapped orbits from 

210rt beam that neutralize outside of the plasma

• 2 different regions are checked for comparison

– Channel with signal (1): R = 1.63-1.73

– Channel without signal (3): R = 1.91-2.01

• Simulated over 1e7 orbits (49–55 keV)

– Channel 1: 953 possible orbits

– Channel 3: 9 possible orbits

– Does not account for reaction cross section

• Experimental signal (49–55 keV)

– Channel 1: 3723 counts

– Channel 3: 542 counts

– Signals contain active and passive components



Strong passive signal originates from trapped orbits from 

210rt beam that neutralize outside of the plasma
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X-Y projection

• Start of orbit
• End of orbit

R-Z projection
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Summary

• INPA is a novel diagnostic with high energy and 

radial resolution

• Simulated images with passive signals significantly 

improve agreement with experiment

• Changes in simulated signals match very well with 

changes in experimental signal

• Edge neutral densities can be inferred through 

simulation

• Prominent passive signals from trapped fast ions 

with edge neutrals are observed

– Can potentially be used to diagnose edge fast ion 

distribution
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