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Motivation / Introduction Frequency chirping behaviours for co-passing cases
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1 Co-passing EP: EP density scan

0.45

— Both energetic particles and thermal ions are treated kinetically.
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* For all the cases, the frequency chirps down
to the same BAE frequency.
* The frequency chirping rates becomes larger

- \ o \ by increasing EP density.
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* Review of saturation mechanism
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— Resonance detuning vs. radial decoupling [4, 5]. For a constant
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C_o-passjng EP : anisotropic slowing down distribution function with DenSIty pertu rbatlon N pnase Space for CO- paSSIng case

single pitch angle
The figures shown here are corresponding to ; = 0.0072 and nyy/n; = 0.004 case.
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Conclusions Energy transfer from EP to thermal ions for co- passing cases
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* By varying both bulk ion beta or by varying EP density, the
mode are found to chirp down to BAE frequency. Frequency chirping by using different distribution functions
* Down-chirping modes can transfer energy to thermal ions in an
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Nonlinear evolutions of mode energy take place depending on the energetic particle distributions.
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