

#### Observation of passing fast ion transport induced by fishbone via passive BES on HL-2A

**Guangzhou Hao<sup>1†</sup>**, Rui Ke<sup>1</sup>, William W. Heidbrink<sup>2</sup>, George R. McKee<sup>3</sup>, Min Xu<sup>1</sup>, Qingdi Gao<sup>1</sup>, Yutian Miao<sup>1</sup>, Peixuan Yu<sup>1</sup>, Ting Wu<sup>1</sup>, Jianyong Cao<sup>1</sup>, Xianming Song<sup>1</sup>, and HL-2A team<sup>1</sup>

<sup>1</sup>Center for Fusion Science, Southwestern Institute of Physics, Chengdu, China <sup>2</sup>Department of Physics and Astronomy, University of California, Irvine, CA, USA <sup>3</sup>Department of Engineering Physics, University of Wisconsin, Madison, WI, USA

<sup>†</sup>E-mail: <u>haogz@swip.ac.cn</u>

Sept. 3-6, 2019



#### I. Introduction

- An initial beam emission spectroscopy diagnostic system (BES) has been developed and deployed on the HL-2A tokamak.
- Fluorescence emitted by fast ions charge exchanging in the high neutraldensity region at the edge region makes appreciable contributions to the BES signals.
- Instabilities in the core region may expel fast ions from the core to the edge. This fluorescence can complicate the analysis of density fluctuation measurement by BES system.
- On the other hand, the presence of passive FIDA light in BES signals may provide useful information about the fast-ion losses.





#### I. Introdution

•  $D_{\alpha}$  emission are composed of six main processes

$$(BES)D_{b}^{0} + D_{th}^{+}/e^{-} \to D_{b}^{0}(n') + D_{th}^{+}/e^{-}$$
$$(DCX)D_{b}^{0} + D_{th}^{+} \to D_{b}^{+} + D_{th}^{0}(n')$$
$$(aFIDA)D_{b}^{0} + D_{FA}^{+} \to D_{b}^{+} + D_{FA}^{0}(n')$$
$$(pFIDA)D_{th}^{0} + D_{FP}^{+} \to D_{th}^{+} + D_{FP}^{0}(n')$$
$$(Halo)D_{th}^{0} + D_{th}^{+} \to D_{th}^{+} + D_{th}^{0}(n')$$

• For BES signals, the local plasma density

$$\frac{\widetilde{n}}{n_0} = K(T_e, n_e, ...) \frac{\widetilde{I}}{I_0}, K \sim \text{const.}$$



11111



• Two beamlines are available now on HL-2A tokamak.

 Table Main parameters of HL-2A tokamak

| Parameters                  | Value                                        | TF, PF Coils & Vacuum<br>Chambor of HL 24 |
|-----------------------------|----------------------------------------------|-------------------------------------------|
| Major radius, R             | 1.65 m                                       | Device                                    |
| Minor radius, a             | 0.4 m                                        | 2 <sup>#</sup> beamline                   |
| Toroidal field, $B_{\rm T}$ | 1.2~2.8 T                                    |                                           |
| Plasma density, <i>n</i>    | $1 \sim 6 \times 10^{19} \text{ m}^{-3}$     |                                           |
| LHCD                        | 2 MW@3.7 GHz                                 |                                           |
| ECRH                        | 3 MW@68 GHz,<br>1 MW@105 GHz,<br>1 MW@140GHz |                                           |
| NBI                         | 1.5~2 MW×2                                   | Arrangement of NBI Injectors on HL-2A     |

## II. BES on HL-2A tokamak

- Focusing on 1# neutral beam;
- Detecting region covers  $R = 1.77 \sim 2.09 \text{ m} (r = 12 \sim 44 \text{ cm}), Z = -5 \sim 5 \text{ cm};$
- Spatial resolution:  $\Delta r = 0.7$  (edge) ~ 1.2 (core) cm,  $\Delta Z = 1.2$  cm;
- Temporal resolution:  $\Delta t = 0.5 \ \mu s \ (2 \text{ M/s}).$



## II. BES on HL-2A tokamak

- Flexible configuration by rearrange fiber bundles on the fiber mount.
- Large objective lenses (18 cm), and off-axis design to fit the limit space.
- 48 channels (12 units of  $4 \times 1$  array) are available.
- 10 Å broadband, sharp-edge filter, **658.6~659.6 nm**;

China National Nuclear Corporation

• Transmission > 75% for full energy peak, < 5% for CII6583.



#### III. Fast-ion $D_{\alpha}$ Calculated by FIDAsim

- Discharge conditions and plasma profiles of shot #22493 at 380 ms are used as input for TRANSP.
- TRANSP provides the plasma profiles, equilibrium fitting and fast-ion distribution function as the input of FIDAsim.
- The 1# NBI is on and 2# NBI is off.
- The axis of BES objective lenses is chose as the scope sightline.



## $\bigcup_{\alpha} = \bigcup_{\alpha} = \bigcup_{\alpha$

• The results of FIDAsim calculation indicate that the fluorescence emitted by fastion charge exchanging will beam neutrals is 1~2 orders weaker than the full energy beam emission spectroscopy.





#### **IV. Experiments setup**

- 48-channel BES system (arranged as  $2 \times 24$  array) covers  $r/a = 0.43 \sim 1$ .
- NBI 1 # was turned off at 1600 ms, and NBI 2# was on during 1600~1800 ms.
- L-mode discharge.







#### **Magnetic perturbations**

- Averaged over 80 ms when NBI#1 is off and NBI#2 is on.
- 1.2 kHz: power frequency induced by dynamo.
- ~3 kHz: Tearing mode, m/n = 3/1.
- 10~15 kHz: fast downwards chirping, typical energetic particle modes on HL-2A. M\_pol\_13 Dynamo EPM





#### **Passive BES responses**

37068

1520.0~1580.0ms

Both EPMs and TMs are observed either w/ NBI#1 or w/NBI #2.



## Passive BES response to EPMs

- Coherent response are only observed on certain channels, which may suggest the angle between sightline and magnetic field lines counts for passive BES.
  - $R = 1.82 \sim 1.90$  m (bes44~bes41): Only incoherent bumps
  - $R = 1.91 \sim 1.97$  m (bes32~bes05) : Coherent & Incoherent bumps
  - $R = 1.98 \sim 2.03$  m (bes05~bes21): Only weak or no incoherent bumps



China National Nuclear Corporation



#### **Passive BES response to TMs**

- Conditional average over 10 periods of 2.8 kHz tearing mode.
- Coherent response of passive BES to TMs is observed.
- Two peaks in every TM period, since the sightline crosses the boundary twice. Slight phase shift between different channels are also observed.





### V. Discussion and Summary

- 48-channel initial BES system has been developed and deployed on the HL-2A tokamak with high spatial and temporal resolution.
- Energetic particle transport induced by instabilities could be observed by passive BES signals.
- Adding the edge neutral density distribution function into the FIDAsim needs to be done.
- Detailed energetic particle transport behaviors are under analysis. The coherence analysis and comparison between BES signal and other diagnostics will be done in the future.



#### • Back-up slides



......

## BES monitors the edge perturbations



#### We choose a time window to study the response of passive FIDA signal to the EPM



101111

### 



We are considering: Does it imply that the EPM on HL-2A induce the transport of passing fast ions with Full energy?

#### Passive FIDA signal measured by BES on the DIII-D were reported





# Heidbrink et al., PPCF 53 (2011) 085007

Heidbrink et al., PPCF,53 (2011) 085028

At present, on the HL-2A, it seems that we also obtain the passive FIDA signal by BES diagnostic. BES signal seems to very similar to that found on the DIII-D.

