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Abstract  

 
The paper focuses on ensuring nuclear safety through vulnerability research of programmable logic controllers, 

which are key components of the operational technology employed in nuclear power plants. Being one of the most popular 

vulnerability discovery techniques, fuzz testing was chosen as a testing method. The aim of the study was to prove the 

effectiveness of fuzz testing in the search for vulnerabilities of programmable logic controllers. The research was undertaken 

in order to develop a specific fuzz testing methodology allowing to test the security of industrial protocols stack 

implementation in firmware of programmable logic controllers. A fuzzing laboratory testbed has been designed with the 

purpose of conducting various fuzzing tests. The paper describes fundamental components of a recommended testbed, with 

regards to hardware and software. As a result of using the developed methodology, several tests were conducted, producing 

diverse outcomes. The process of discovering and investigating a zero-day vulnerability in a Siemens S7-1500 series PLC is 

discussed in the paper. The research was carried out in the Nuclear Centre for Nuclear Research (Poland) as part of IAEA 

Coordinated Research Project J02008 on incident response in nuclear facilities. 

1. INTRODUCTION 

Critical infrastructure, such as nuclear power plants (NPP), widely uses various Operational Technology 

(OT) solutions, such as Industrial Control Systems (ICS), in order to fulfill their functions. OT networks used to 

be logically and physically isolated from other business functions, but nowadays this is not always true. Along 

with the digitalization of such systems, they became interconnected and inter-networked. Thus new 

cybersecurity threats were introduced. 

In the case of critical infrastructure, even the smallest disruption can cause undesirable, hazardous 

outcomes. An action as simple as changing a value of a single variable (e.g. temperature sensors readings) can 

affect the pump control or the whole cooling system. One of the key components of industrial control systems 

are programmable logic controllers (PLCs), which process information about the physical process in order to 

control it. Because PLCs are an inseparable part of 80% of ICS designs, their robustness has a direct, 

incontestable impact on the safety of the whole control systems [1]. Some of the publicly reported incidents 

involving PLCs are: a Stuxnet worm attack on Iranian nuclear facilities (2010) that reprogrammed PLCs to 

operate incorrectly resulting in failure of centrifuges, and an incident in Browns Ferry nuclear plant in Alabama, 

where a faulty PLC overloaded the network with excessive traffic [2][3]. Therefore, PLCs have been chosen as 

an object for our studies. 
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The security of various aspects should be tested: logical security of hardware components, firmware 

code, or its communication channels – both radio and physical connections. Because testing the security of 

hardware components is time-consuming on a large scale, and code review is often not possible as the code is 

not publicly available, testing communication channels was chosen for this research. 

The security of communication channels can be tested using two approaches. The first one is a classic 

verification of whether mechanisms ensuring confidentiality, integrity and accountability of data or commands 

sent through a communication channel, are implemented. The second approach focuses on how well the 

messages sent through that channel are processed by the device itself. As the first approach often depends on the 

transmission medium or protocol used, security problems are usually easy to notice, whereas an analysis of 

whether the protocols are processed by a device in a secure way is much more difficult, especially without 

access to firmware source code. 

One of the methods commonly used for that purpose is network-based fuzz testing. It allows testing of 

the implementation of communication protocols at various stack levels, without any prior knowledge about the 

device internals. What is more, it is relatively easy to implement, and provides great scalability. 

In order to define an efficient fuzz testing methodology for PLCs, a specialized laboratory, consisting of 

several PLCs and a fuzzing tool, was created. Using this testbed, different models of Siemens PLCs were 

examined for robustness of different network protocols implementations. During the conducted research several 

vulnerabilities were found, including a zero-day vulnerability in Siemens S7-1500 PLC. 

2. FUZZ TESTING 

Fuzz testing (also known as fuzzing) is an automated technique for detecting vulnerabilities in software. 

The main foundation of this technique is to prepare numerous malformed inputs (Input Generation), deliver 

them to the tested target (Input) and monitor the target for any unexpected behavior (Instrumentation). 

A software performing these tasks is called a fuzzer. Depending on how the malformed inputs are created, 

fuzzers can be classified as one of the following types: mutational, generational or evolutionary. Mutational 

fuzzers randomly mutate samples of valid inputs in order to produce malformed ones. Generational fuzzers are 

more advanced, as they generate inputs from scratch, with full knowledge of protocol structure. Evolutionary 

fuzzers learn the protocol structure over time, using feedback from sent inputs as the reference. 

In order to perform various tasks, PLCs need to communicate with other components, such as 

supervisory systems, Human Machine Interfaces, I/O islands or engineering workstations. For years, numerous 

communication protocols were designed for that purpose, such as Modbus, Profinet or S7. Nowadays, more and 

more industrial protocols are based on the IP protocol, known from the world of Information Technologies. On 

the one hand, it provides easier integration and cheaper solutions for customers, but on the other hand, it 

introduces risks, as manufacturers often use complex libraries to handle its implementation, without proper 

testing. 

Network protocol fuzzing means that the target of testing is protocol-handling code. Firstly, network 

packets that are compatible with the chosen protocol rules have to be generated with a fuzzer. Secondly, the 

delivery mechanism has to be chosen, depending on whether the target is a server or a client. In the first case, 

the fuzzer acts as a client, though sending malformed requests instead of proper ones. In the second case, the 

fuzzer represents a server, listening to target requests and responding with malformed replies. Fuzzing can be 

applied in two architectures - end-to-end testing or pass-through testing. The end-to-end testing variant requires 

the target device to be directly connected to the fuzzer, whereas pass-through testing variant allows the target to 

only mediate in communication. Therefore, end-to-end testing is used for PLCs testing, while pass-through 

testing can be applied during investigation of components like firewalls. 

In order to make good use of fuzz testing, it is essential to obtain feedback from the tested device 

(referred to as Instrumentation). Revealing and locating a vulnerability is the aim of fuzzing, which means that 

both checking for failure and reproducing the failure are equally important. That being said, there is a need to 

issue a verdict whether a failure has occurred or not. Depending on the tested system, instrumentation can be 

done using different methods. Human observation is the simplest of them. While in certain cases it is enough to 

simply look at a flashing diode, other alarm indicators or log files could be necessary in order to determine that 

an error has occurred. Although this approach is not efficient when testing a lot of targets for a long time, it may 

prove useful while testing a setup and conducting initial tests. Another fail detection method is the valid case 
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method, which is automated and does not rely on human observation. It involves sending a valid input following 

a certain number of malformed inputs and waiting for a valid response. One of its advantages is that it is usually 

easy to implement, in particular in the case of network protocol fuzzing. Resource monitoring is yet another 

method enabling recognition of an occurring malfunction. It is based on monitoring usage of processor, 

memory, disk space, and other parameters that may indicate failure of the target system. This method provides 

opportunity to discover even subtle errors, as some of them may not be critical enough to result in a lack of 

responsiveness of the target, but may only be revealed based on, for example, higher memory usage [4]. 

In order to ensure that the vulnerability discovery process is as effective as it can be, it is advised to use 

a fuzzer capable of logging both sent test cases and received responses. Apart from those logs, logs from the 

tested target are also beneficial to monitor parameters such as connection status, memory or CPU usage. 

Moreover, it is good practice to provide an external network sniffer that captures all the traffic between tested 

target and the fuzzer. It can be of value especially in the case of false positive signals from the fuzzer, since an 

analysis of recorded traffic can help to rule out an actual malfunction. 

3. LABORATORY CONFIGURATION 

The initial testbed of a fuzzing laboratory for PLC testing can be a simple one, although it can be 

extended if needed. Its fundamental hardware components are a computer for running the fuzzing software and 

a PLC to be tested. In terms of software, not only a fuzzer is required, but also software for the PLC 

configuration, which is usually provided by the PLC vendor. Depending on the specific laboratory configuration 

and environmental requirements, some additional network devices, such as switches or routers, may be useful. 

The fuzzing laboratory formed at National Centre for Nuclear Research (NCBJ) consists of one 

laboratory stand. Its key components are presented in Table 1, while the laboratory scheme is illustrated in 

Fig. 1. 

 

TABLE 1. HARDWARE AND SOFTWARE USED IN LABORATORY 

 Component Importance Specification 

H
a

r
d

w
a
r
e 

PLC required 

PLC Siemens S7-317 

PLC Siemens S7-1511 

PLC Siemens S7-1512 

Computer required 
1 fuzzer server 

1 fuzzer license server 

Switch optional 
D-Link Web Smart 

Switch DGS-1224T 

S
o

ft
w

a
r
e 

Fuzzer required Defensics from Synopsys 

PLC configuration software required TIA Portal v14 

Network protocol analyzer recommended Wireshark 

SCADA/HMI optional WinCC 
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FIG. 1. Laboratory setup. 

The tested devices were chosen based on an interview with NCBJ engineers who indicated popular 

choices in the case of nuclear applications. The manufacturer Siemens was chosen as a provider of PLCs to be 

tested because its products are believed to be widely used in industry [5]. Then two PLC series were selected as 

test subjects: S7-300 and S7-1500. One of the reasons for choosing the S7-300 series was the fact that these 

PLCs were targets of the Stuxnet worm attack in 2010 [6]. The S7-1500 series PLCs are the most modern 

Siemens PLCs already used in various applications and are expected to gain even more popularity throughout 

the industry. 

Apart from PLCs, another required component of a fuzzing laboratory is a computer with the fuzzer. In 

the case of the discussed laboratory, two computers are used. One of them acts as a license server for the fuzzer 

software, while the other is equipped with the software itself. Both switch and router are used as a part of the 

laboratory’s own local area network in order to provide connection between computers, i.e. between the fuzzer 

and the license server. In terms of industrial protocols fuzzing software, there are many available fuzzers, both 

free and commercial, such as ProFuzz [7], Profinet Set Fuzzer [8], Peach Fuzzer [9] and Defensics [10]. The 

latter was chosen for the presented setup, because it offers the most suitable capabilities for it. Defensics is a 

generational fuzzer with over 250 ready-made test suites, which are sets of configuration options and test cases 

for a given protocol. Several test suites compatible with protocols supported by the selected PLCs were 

purchased for the purposes of the planned testing. 

As far as software is concerned, a PLC configuration software is essential in order to prepare PLCs for 

fuzz testing. Details such as IP address, ports options and other general settings should be set before the start of 

tests. Writing a simple program and downloading it to the tested PLC in order to detect a potential change in 

PLC operation caused by a test is also advised. Choosing the TIA Portal software for this research setup is self-

explanatory, as it is designed specially for Siemens devices. The use of software that allows capturing and 

analyzing network traffic is recommended in order to have additional analysis capabilities in case an anomaly 

was detected. This can prove useful in particular to exclude false positive cases, when for example the fuzzer 

mistakenly marks a test as failed. Wireshark [11], being a popular sniffer, was chosen as network protocol 

analyzer for the described laboratory. Lastly, a SCADA or HMI can be used as an optional component of a 

fuzzing laboratory. Thanks to it, communication problems between the PLC and operators displays can be 

detected. Similarly to the PLC configuration software, the process of choosing a software for the discussed 

laboratory purposes was dictated by the chosen PLCs. Therefore, WinCC software provided by Siemens became 

part of the proposed fuzzing laboratory. 
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4. RESEARCH ON METHODOLOGY 

4.1. Initial Tests 

In order to see if the setup behaved correctly and the fuzzer could communicate with the tested PLC, 

some initial configuration steps were required. Available test suites were configured by providing the correct IP 

and MAC addresses of the tested PLC. Sample tests, consisting of 10% of all available test cases were run to see 

how the tested devices behaved and how the used fuzzer (Defensics) operated. The other settings were set to 

default. All the described tests were carried out on the S7-1512 PLC with firmware version 2.1.0. The PLC was 

tested only in server mode, as the target PLC was not configured to perform any actions and it would not send 

any queries without prior request from the fuzzer. 

Table 2 shows the conducted tests with their results and comments. Erroneous behavior was observed 

for: 

— IGMP test suite: the target did not respond to IGMP queries; 

— Profinet DCP Server test suite: some of the test cases did not pass. Further investigation of this issue is 

described in the next subsection; 

— TCP for IPv4 test suite: most payload types tested in this test suite (SSHv2, TELNET, BGP4) were not 

applicable to the PLC. Only TCP message with HTTP GET payload received any response. Since there 

is a separate test suite for HTTP protocol, no further tests were conducted using TCP for IPv4 suite. 

TABLE 2. INITIAL TESTS RESULTS 

Test suite name No. of test cases 
Duration 

[hh:mm:ss] 
Verdict Comment 

ARP Server 139177 01:48:33 pass --- 

HTTP Server 18170 00:24:32 pass --- 

ICMPv4 474179 00:27:41 pass --- 

IGMP 1380 00:00:22 n/a 

Tested device did 

not respond to 

IGMP Queries 

IPv4 44916 00:32:54 pass --- 

Profinet DCP Server 5939 00:08:46 fail 

Error investigation 

described in part 

4.2 of the paper 

Profinet PTCP Server 124426 1:23:00 pass --- 

TCP for IPv4 
interoperability 

check 
00:00:00 inconclusive 

Tested device did 

not respond to 

some types of 

payload 

 

4.2. Profinet DCP Server Error Investigation 

The Profinet DCP Server test on the S7-1512 PLC resulted in several fail verdicts. Some of the test cases 

required two instrumentation attempts to pass. The default value of max. instrumentation attempts is 1, so those 

test cases were marked as failed. In order to diagnose the problem, the connection between TIA portal and the 

PLC was checked. No connectivity problems were detected, so the question was why the device did not respond 

to all queries despite a working connection. To find the answer network traffic was captured from the test and 

analyzed using the Wireshark tool. A detailed traffic review revealed that the instrumentations marked as failed 

in fact received proper responses, and that therefore, the fail verdict might be caused by too long response times. 

In order to confirm this hypothesis, the default 1000ms value of maximum response time for instrumentation 

was first changed to 10000ms and then to -1 value (which is unlimited wait time). 
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Contrary to expectations, the error persisted, so the description of the issue, along with collected logs and 

traffic captures were sent to the Defensics technical support. After internal investigation, the support concluded 

that a bug in the Profinet DCP test suite caused a problem, and a fix was provided. After conducting tests using 

this new version, failures were no longer observed. Therefore, the connectivity problem was recognized as a 

false positive error. 

4.3. Further Testing 

Further testing included running full tests of all applicable test suites, including the new version of the 

Profinet DCP test suite. As presented in Table 3, all of the tests, except IPv4, passed. Investigation of that 

verdict is described in the next section. 

 

TABLE 3. FULL TESTS STATISTICS 

Test suite name No. of test cases 
Duration 

[hh:mm:ss] 
Verdict Comment 

ARP Server 5722150 67:27:23 pass --- 

HTTP Server 2003009 40:27:45 pass --- 

ICMPv4 6239887 05:49:12 pass --- 

IPv4 113516 17:06:45 fail 

Test run 

interrupted due to 

PLC error 

Profinet DCP Server 221432 01:33:33 pass --- 

Profinet PTCP Server 4121092 45:54:22 pass --- 

4.4. IPv4 Test Suite Fail Investigation 

The failed verdict in the IPv4 test suite was caused by a continued lack of response after a specific test 

case. The default setting allows unlimited instrumentation attempts (the test is never interrupted). To aid the 

investigation, the traffic capture was started and the maximum instrumentation attempts value was set to 100 for 

the next tests, so that if the error happened again, the test would not have to be interrupted manually. Rerunning 

the full test showed repeatability of the error. 

After inspecting the PLC visually and analyzing recorded traffic, it was found that connectivity between 

the PLC and the computer running the test was lost. Additionally, the connectivity was tested using TIA Portal 

and a ping command from the connected laptop, with the same results. Also, a simple program switching output 

values in cycle was uploaded to the device and it was observed to continue uninterrupted. Communication with 

the PLC could only be restored after a hard manual reset of the device. 

As it was not clear whether one test case or a sequence of test cases had caused the error, multiple tests, 

as shown in Table 4, were conducted. Firstly, the individual test case that was run directly preceding the break 

in communication was sent, but did not cause a failure (test 01 in Table 4). Test cases are grouped by type of 

their modification and it was decided to run test 02 containing all test cases from the group in which the error is 

triggered. This approach resulted in a fail verdict. The next step was to run only a fragment of the group 

(narrowing the malformation type) in test 03. It triggered the error in about 33 minutes. Next, in order to 

confirm repeatability of the fail conditions after about the same time, the same test was rerun (tests 04-08). To 

further narrow the group, it was decided to run test 09 consisting a very small fragment of the previous test 

sequence. As this did not resulted in a fail verdict, tests 10-16 were run with larger and larger fragments, up to 

the point when test 16 successfully caused an error. To exclude a coincidence, test 16 was repeated (tests 17,18). 

Based on the results of the described tests, it was observed that after rerunning the test several times with 

test sequences starting from a different test case, but all from the same group, every time the error occurred after 

a similar amount of time (about 33 minutes). This suggested that the number of sent test cases from the group 

was a decisive factor, rather than the specific sequence or a single malformed packet. To confirm this 

hypothesis, several test cases from the group were randomly selected and sent in an infinite loop (test 19). 

Eventually, this triggered the error after a similar amount of time to the previous tests. Going further, subsequent 
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single test cases were rerun in loop. Some of them are presented as tests 20-23. It was determined that the 

majority of the looped test cases from the group caused an error after about the same time. 

 

TABLE 4. ERROR INVESTIGATION TESTS RESULTS 

Test ID 
Test cases 

sequence 

Duration 

[hh:mm:ss] 
Failed instr. Verdict Comment 

01 386263 00:00:00 0 pass a single test case 

02 0-355119 04:19:32 6 fail 
group tested up to 

failure 

03 327644-355119 00:33:53 6 fail 
a fragment of tested 

group 

04 327644-355119 00:32:42 2 fail rerun of above 

05 327644-355119 00:32:17 2 fail rerun of above 

06 327644-355119 00:32:04 2 fail rerun of above 

07 327644-355119 00:32:01 3 fail rerun of above 

08 327644-355119 00:33:32 5 fail rerun of above 

09 365000-368263 00:02:34 0 pass 
a small fragment of 

tested group 

10 360000-368263 00:06:29 0 pass --- 

11 355000-368263 00:10:27 0 pass --- 

12 350000-368263 00:14:22 0 pass --- 

13 345000-368263 00:18:20 0 pass --- 

14 340000-368263 00:22:17 0 pass --- 

15 335000-368263 00:25:45 0 pass --- 

16 330000-368263 00:30:11 2 fail --- 

17 330000-368263 00:29:53 1 fail rerun of above 

18 330000-368263 00:30:09 2 fail rerun of above 

19 365186-368263 00:35:00 6 fail 
a small fragment in 

a 35 minute loop 

20 368235 00:35:00 6 fail 
a single test case in 

a 35 minute loop 

21 368258 00:35:00 9 fail 
a single test case in 

a 35 minute loop 

22 2682247 00:35:00 0 pass 
a single test case in 

a 35 minute loop 

23 368249 00:35:00 8 fail 
a single test case in 

a 35 minute loop 

 

In the next step, the network traffic from the last rerun (test 23) was recorded to extract the exact IP 

packet that triggered an error when sent in loop. It was recognized to be a packet with incorrect data in one of 

the rarely used header fields. A proof of concept script using python with scapy library [12] was created. In 

order to add the monitoring functionality to the script, the python-snap7 [13] library was used. This enabled 

a verification of connectivity after one or more manipulated packets were sent. Several tests using the prepared 

exploit were performed, every one of them resulting in triggering the vulnerability. The script was sending 

packets much faster than the fuzzer, and therefore, it caused an error in under a minute, after sending the 

malformed packets approximately 33000 times. This confirmed that a vulnerability was found and was triggered 

by sending a certain amount of modified IP packets. 
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As all the above tests were conducted on S7-1512 with firmware version 2.1.0, other firmware versions 

from 2.0.0 to 2.5.0 on S7-1512 and S7-1511 were examined using the proof of concept script in order to check 

the scope of the vulnerability. Both tested PLCs behaved alike, however, the attack was successful only on 

firmware versions preceding 2.5.0. This could have indicated that Siemens was aware of the problem and solved 

it in new firmware releases. 

To confirm these findings, vulnerabilities for S7-1500 PLCs, published by Siemens CERT were 

reviewed [14]. No known vulnerabilities were found that corresponded to the one discovered during this work, 

so, in accordance with the responsible disclosure policy, proof of concept was sent directly to the Siemens 

CERT. Eventually, the vulnerability was classified as not previously known and an appropriate Siemens 

Security Advisory [15] was published. The code CVE-2018-13805 was assigned to the vulnerability. 

5. RESULTS 

The conducted research led to the creation of a methodology of fuzz testing based on practical 

experience. Fig. 2 presents the developed procedure for fuzz testing PLCs in a systematic and intuitive way. 

In order to begin testing, a list of protocols supported by the tested device should be prepared. This task 

can be accomplished using one or both of following approaches. The first approach is to thoroughly study the 

documentation of the tested PLC to check which protocols are supported by the device. Another way of 

determining the list of protocols to be tested is to scan the PLC looking for open ports and available network 

services. This approach allows to create a list of protocols that needs to be tested, as any available service is a 

potential attack vector. 

 

 
FIG. 2. Diagram presenting developed fuzzing methodology. 

 

Once the list of protocols is complete, the main part of testing can be started. The first step is to run a full 

test of the protocol selected from the list. A full test means that during the test, all available test cases from the 

selected test suite should be used. It is recommended to log both valid and failed cases. However, using traffic 

capture is inadvisable, as it could use excessive amounts of disk space. At the same time, run control interval 
times should be carefully adapted to ensure that they are not unnecessarily long. This is especially crucial during 

a full test run, since even one needless millisecond per test case can result in a noticeable time difference, given 

the sheer number of them. 

A full test run results in either a failure or a pass verdict. Depending on the received result, there are two 

possibilities of further actions. If no failure is detected, the protocol should be marked as tested, and a full test of 

the next protocol from the list should be carried out. The second scenario is a fail verdict of the test. In order to 

further investigate the issue, a vulnerability extraction process should be conducted. Generally speaking, the aim 

is to confirm the correctness of the verdict and determine the particular sequence of test cases that triggers the 

vulnerability. Fig. 3 shows the proposed steps of this process. 
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FIG. 3. Diagram presenting vulnerability extracting process. 

 
In order to analyze the potential vulnerability, it is crucial to determine if a fail verdict is repeatable. 

When it is not, it should be marked as a false positive and no further conclusions can be drawn. To check 

repeatability of the verdict, failed cases should be rerun. In order to avoid false positives, additional diagnostics 

should be used, such as traffic analysis and constant connectivity monitoring. Assuming that the scenario is 

reproducible, two subsequent approaches to investigation of the optimal test case sequence that triggers the 

vulnerability were defined. 

It is recommended to start with short tests which are highly likely to trigger a failure. One should begin 

with a rerun of a single test case that was sent directly before the failure occurred. If the failure is not 

reproduced, it is advised to rerun several additional test cases and finally, the whole test group. If such a trivial 

approach has no effect, the second approach can be applied, the main idea of which is to start using the whole 

sequence and then decreasing the number of test cases in it. The first rerun consists of all test cases preceding 
the erroneous state. In the next steps the test sequence should be narrowed down using the bisection algorithm. 

That means halving the sequence after every rerun, up to the point when the failure stops occurring, and then 

similarly reducing the sequence in the range between the last sequence that still triggers the error and the first 

sequence that does not. 

In addition to decreasing the number of test cases in the attack sequence, less typical sequences should be 

tested. For instance, looping the last test case that was sent before the crash or looping the whole group from 

which the test case originates. This approach is necessary to trigger errors like buffer overflow. 

The final goal of investigating a vulnerability is fixing the bug. All discovered vulnerabilities should be 

reported to the vendor in a responsible manner. In order to prove its existence and speed up verification process, 

a proof of concept can be prepared and provided to the vendor of the faulty device or software. 

The last step of the systematic approach to PLC fuzz testing is to prepare a full documentation that 

consists of a description of the scope of testing and detailed results for each test suite. This approach can help 
enhance existing fuzzing procedures and aid further tests. 

6. SUMMARY AND OUTLOOK 

The proposed systematic approach to fuzz testing of programmable logic controllers allows the 

examination of new and existing devices in order to find vulnerabilities associated with incorrect protocol 

processing. Such testing increases security of critical systems where industrial devices, such as PLCs, are widely 

used. It is worth emphasizing that the testing effectiveness of testing strongly depends on the quality of the 

fuzzing tools used. A fuzzer generating as many different inputs as possible should increase probability of 

finding a vulnerability. It should be noted that a tested PLC presenting no failures does not mean that it is 

flawless or that there are no hidden vulnerabilities contained in it. No testing can cover every single possible 

combination of test cases and external, concurrent circumstances that may result in unexpected event causing 
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device failure. The goal is only to find as many vulnerabilities as possible in a systematic way, thus reducing a 

threat of undetected ones. 

Additionally, the research shows the effectiveness of the fuzz testing method. It was proven that it is 

possible to find a new vulnerability in a popular device thanks to systematic searching through millions of 

combinations in an automatic way. 
The presented laboratory could be extended in several ways. There is a need to equip the fuzzer with 

additional different protocols used in the automation industry. Next, more PLCs and different industrial devices 

could be tested using the presented systematic approach. In order to investigate how exploiting vulnerabilities 

(such as the CVE-2018-13805 discovered in this work) affects whole critical systems, attack scenari could be 

created and analyzed. 
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