

Radiological Material Security in Large Panoramic Irradiators

Martin Sandoval

2/10/2020

Global Material Security

Introduction

- Large panoramic irradiators (LPI) are widely used to sterilize medical supplies, food products, spices, cosmetics, and other consumable goods
- Approximately 50 commercial irradiators are in operation in the United States and over 200 are in operation worldwide
- Review security concepts implemented by US DOE/ORS at LPI facilities

- Each irradiator has millions of curies of Co-60
- Source material is an interest to terrorist and criminal organizations
- Radiological Dispersal Device (RDD) or Radiological Exposure Device (RED)
- The dispersal could be confined to a small area intended to expose a specific population or could be widespread intended to contaminate a large area

Security Overview

- The LPI security system should have a high probability of detecting an attempted attack and delay the removal of the source material
- Minimize disruption to operations at the facility
- Detection, Delay, and Response
- Continuous and Balanced Protection
- Layers of Protection

Detection

- Discovery of an adversary's action
- Typically accomplished by stimulating a sensor
- Effective detection also includes alarm assessment
 - Video assessment vs
 - Human detection and assessment
- True alarm, False alarm, Nuisance alarm

Delay

- Delay is intended to slow the adversary along the path to the intended target or at the target
- Delay elements must be placed after detection
- Access Control
 - Security element that controls which persons have access to a room or space
 - Access control systems can also be used to deactivate, or shunt, a detection element

Response

- Response is the human element that is used to interrupt and stop an adversary's actions
- A good response requires an appropriate number of responders with appropriate weapons to stop an adversary
- Not covered because of the special intricacies associated with jurisdictional authority and localized tactical procedures

- All elements of the security system being equally difficult to defeat with no gaps in coverage
- Detection is consistent with no gaps in detection, and delay is the same no matter how an adversary enters an area
- No alternative means of entry that provide an adversary any advantage

Layers of Protection

- Also referred to as protection-in-depth
 - Multiple levels of continuous and balanced security elements in an adversary's path to a target or attack goal
- Each layer may not be equal, and the effectiveness may be quite different, but in general the layers should be more difficult to defeat or avoid closer to the target
- Access through each layer should be granted only to individuals who have legitimate work-related activities in that specific area
- The security system should isolate the source from the other areas of the facility, and the security system of the facility should isolate it from the general public

LPI Security Concepts and Lessons Learned

- Intrusion Detection and Assessment
 - Balanced Magnetic Switches (BMS) on doors
 - Motion sensor to cover surfaces, including door
 - Duress buttons/switches located were facility personnel are located
 - Focus should be on detection at the outer layers and delay closer to the target area
 - Detection sensors within the source containment should only be activated when the source rack is in the down position or when no personnel are present on site

LPI Security Concepts and Lessons Learned (con't)

- Pressure pads, independent of the safety system, should be positioned inside the source containment boundary entrances
- Fixed assessment cameras should be located to assess the situation of an alarm generated by any sensor (duress PIN, BMS, motion sensor, duress button, or pressure pad)
- Assessment cameras should be located outside the high radiation areas in the source containment boundary
- Radiation sensors, for detecting the removal of source material from the source containment, should be installed near the exit points of the source containment boundary

LPI Security Concepts and Lessons Learned (con't)

- Delay, Structural Elements, and Access Control
 - Two-factor access control should be implemented on the control room door
 - Two-person / two-factor access control should be implemented on the source containment boundary door(s)
 - Openings greater than 96 in² in the control room and source containment boundary should be covered with grates or expanded metal mesh.

LPI Security Concepts and Lessons Learned (con't)

- A cage to house the source removal tools should be constructed
- A cost effective option to designing and manufacturing a cage is to use a commercial vault/safe
- If practical, all IT infrastructure should be collocated and positioned in a space that is already protected.
- Alarms should be monitored and assessed on-site or off-site 24-hours/day, 7-days a week

ACKNOWLEDGEMENTS

- This work was funded by the United States of America's Department of Energy, National Nuclear Security Administration, Office of Radiological Security.
- This work was performed at Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

