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Abstract 

 

Nuclear facilities are making increasing use of digital technology for Instrumentation and Control (I&C). This has 

several benefits, including increased efficiency and maintainability of systems. However, digitalization introduces the risk of 

cyber-attacks to systems that support critical facility functions. To realize such a cyber-attack, an attacker must compromise 

and manipulate the I&C systems that are associated with a targeted function, e.g., by targeting the I&C systems that are 

controlling pressure levels in the pressurizer vessel of a Pressurized Water Reactor (PWR). To sabotage a function, an 

adversary can compromise the systems that directly support the function. A widely-used digital technology in this context is 

the Programmable Logic Controller (PLC), which executes user programs that engages actuators, based on sensor readings. 

There are several ways that PLCs can be compromised and manipulated. A particularly challenging type of attack is a False 

Data Injection Attack (FDIA), which involves an adversary manipulating sensor data to cause a PLC to incorrectly control a 

process. In this paper, a system to detect cyber-attacks, which aim to sabotage a facility function, is presented. Leveraging 

capabilities of a widely-available state-of-the-art PLC, the system executes directly on the device that is controlling a process. 

The intention is to provide a last line of defence to sabotage attacks. A method to detect FDIAs, which is intended to be 

integrated into the proposed system, is described. The results from an initial evaluation are shown that suggest the proposed 

approach is feasible, both regarding the capabilities of the PLC and the ability to detect FDIAs. 

1. INTRODUCTION 

Nuclear facilities are increasingly using digital technologies to support important facility functions, such 

as reactor cooling. This has several benefits, including the potential for increased efficiency of operations and 

maintainability of systems. However, digitalization introduces a greater risk of cyber-attacks sabotaging facility 

functions, potentially resulting in nuclear security or safety consequences. To implement a cyber-attack that results 

in these forms of consequence, an adversary should have to compromise several systems, which are arranged 

using a defence-in-depth strategy. This requirement gives a defender the opportunity to detect an attack, prior to 

it reaching the systems that directly support a function that is being targeted. However, for several reasons, it may 

not be possible to detect an attack prior to it engaging the targeted systems. 

A commonly used digital technology that supports process control in nuclear facilities is Programmable 

Logic Controllers (PLCs). These devices execute user programs that control actuators, which affect physical 

processes, based on input from digital and analogue sensors. To cause the sabotage of a facility function, an 

adversary can manipulate the operation of a PLC. This can be achieved in several ways, for example, by stopping 

or changing the user program executing on the PLC, or by manipulating the sensor data that is used to inform 

control behaviour. The latter is known as a False Data Injection Attack (FDIA). 

In this paper, a system is presented for detecting attacks to PLCs that executes directly on the device. The 

aim is to provide a last line of defence, in case an attack is not detected prior to it engaging the PLC and the data 
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it uses for operation. The system is implemented on the Siemens SIMATIC S7-1518 PLC, which supports the 

execution of programs that are implemented using the C++ programming language. These C++ programs can 

interface with the portion of the device that executes user-defined control programs. In contrast to previous work, 

the proposed system has a reduced attack surface – as it executes directly on the PLC – and its failure should not 

affect the normal control behaviour of the device. Additionally, an approach to detecting FDIAs is presented that 

uses the residual (difference) between the predicted state of a system and the measured state to identify anomalous 

behaviour. The intention is to integrate this approach into the system for intrusion detection that executes on the 

PLC. An initial evaluation has been performed using a so-called hardware-in-the-loop testbed, wherein PLC 

hardware is integrated with a Pressurized Water Reactor (PWR) simulator. Results indicate that an FDIA targeting 

a PLC that is controlling the pressure level in pressurizer vessel of a PWR can be detected and that the execution 

of resource-intensive C++ programs on the PLC does not adversely affect the control behaviour of the device.   

2. RELATED WORK 

In this section, we provide an overview of closely-related work on approaches to detecting cyber-attacks 

using Programmable Logic Controllers (PLCs) and identifying attacks that target the manipulation of processes. 

2.1 PLC-based intrusion detection systems 

Jin et al. have created a “lightweight” cyber-attack detection solution, called Snapshotter, that uses a host 

agent to log PLC inputs and outputs [1]. The input and output (IO) values are then periodically forwarded to a 

server that runs a simulation of the PLC’s control. The server’s simulated values are compared to the real IO from 

the PLC and security events are generated when they do not match. The logging mechanism is forward-secure, 

ensuring data integrity and using fresh encryption keys for each log. One drawback of this external monitoring 

approach is that such a setup increases the number of hardware and software components on the control network 

and, therefore, increases the attack surface. For example, the authors have used the OpenPLC framework for their 

agent, which runs on a Raspberry Pi and implements a web server. 

Garcia et al. use a Siemens S7-1515 PLC to monitor PLC logic by using the PLC’s own hypervisor which 

runs a Windows virtual machine (VM) [2]. The authors create a dynamic-link library (DLL) and load it to the 

hypervisor. The Windows DLL uses a shared area of memory between the hypervisor and the PLC logic. This 

shared area of memory acts as a temporary buffer for the PLC’s IO. The DLL checks the IO against a set of pre-

defined safe values, and only if deemed safe are they forwarded to their destination. This integrated Windows 

DLL solution is perhaps the most valuable work in the field of PLC-based security solutions. The DLL’s use of 

shared memory between virtual machines means that the IO verification is happening at one of the lowest levels 

possible for a Windows software application. However, this IO verification is executed during the PLC’s program 

cycle. This means that if the DLL encounters errors, or if the shared memory addresses change, then the maximum 

cycle time could be violated, and the PLC could enter the FAULT or ERROR mode, thus ceasing program 

execution. Furthermore, the authors explicitly state that their solution assumes that S7CommPlus has not been 

reverse engineered and that the attacker has no programming connection; this situation is unlikely to persist [12]. 

In contrast to these contributions, our approach to PLC-based attack detection uses capabilities that are 

natively supported by the Siemens S7-1518 PLC. This has several advantages, including reducing the attack 

surface that the detection capability introduces (when compared to the approach that has been proposed by Jin et 

al.), and using standard interfaces that, in the case of the failure of our approach, do not adversely affect the control 

operation of the PLC.    

2.2 Detecting cyber-attacks to processes 

Goh et al. have applied an unsupervised Long Short-Term Memory Recurrent Neural Network (LSTM-

RNN) to predict the expected values of parameters from a process [3]. The cumulative sum (CUSUM) method is 

applied to the residuals to detect the deviation of predicted values from the actual sensor data. A dataset that was 

collected from a large-scale Secure Water Treatment Testbed (SWaT), which is built by the Singapore University 

of Technology and Design, is utilized to test the effectiveness of the method [4]. The results show that 9 out of 
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10 cyber-attacks were detected. However, this approach has high computational cost, so it was not applied to all 

the process stages in SWaT. 

Eggers applied Principal Component Analysis (PCA) and Independent Component Analysis (ICA) with a 

static and moving window to detect simulated cyber-attacks in Nuclear Power Plants (NPPs), based on modified 

real-time normal data that was acquired from an NPP [5]. These cyber-attacks simulate a simultaneous physical 

Small Break Loss Of Coolant Accident (SBLOCA) with an FDIA towards safety systems, which fools the safety 

system with normal data to prevent the reactor safely shutting down. Twenty-nine signals from different 

subsystems, including the reactor coolant system, reactor building, and makeup tank, were selected to evaluate 

the proposed attack detection model, and the results show that the models detect attacks successfully. 

Zhang et al. have developed a cyber-attack detection system to provide broad attack coverage using 

supervised and unsupervised machine learning algorithms, based on the combination of cyber data and process 

data [6][7].  Process data was utilized to detect small deviations from normal operation using an unsupervised 

model. The data collected from a real-time testbed with a physical flow-loop facility and a control system [8] 

under several cyber-attacks, was utilized to evaluate the system. The results show that the system detects these 

cyber-attacks effectively. 

This research show that process data can be valuable to detect cyber-attacks. However, all of this research 

utilizes data across subsystems, which has two drawbacks: (i) the systems that are used to collect the data, which 

is used for detection, have a relatively large attack surface that could result in the data being tampered with; and 

(ii) in the event of a resource starvation attack, such as a Denial of Service (DoS) attack, it may be that data cannot 

be collected to enable detection. Therefore, this paper proposes a localized model to maintain a small attack 

surface and improve data availability by acquiring data locally. 

3. PRELIMINARIES 

Preliminary information is provided, including an overview of the PLC that the proposed detection system 

is based on and an introduction to the operation of a pressurizer in a Pressurized Water Reactor (PWR). 

3.1 The Siemens Simatic S7-1518 MFP programmable logic controller  

The Simatic S7-1500 range of controllers are the most functionally sophisticated PLCs that Siemens AG 

produces. They include features that are targeted for Industrial Internet of Things (IIoT) environments and offer 

several physical interfaces and support new industrial automation protocols, such as OPC Unified Architecture 

(UA). The newest S7-1500 PLCs include a hypervisor that executes a VM, as well as the standard PLC firmware 

and hardware. In the case of the S7-1518 Multifunctional Platform (MFP) PLC, Siemens has developed a custom, 

lightweight Linux operating system distribution, which executes on the same x86_64 chip that also executes the 

PLC’s control logic. The Linux VM is referred to as the C++ Runtime and the term CPU Runtime is used to refer 

to the area in which PLC logic is executed. Siemens suggest that the intended purpose of the C++ Runtime is to 

execute more complex computational algorithms and to send data to enterprise resource planning systems. 

Applications that execute in the C++ Runtime are implemented using the C and C++ programming languages [9]. 

This arrangement is depicted in Fig. 1. 

Fig. 1. An overview of the implementation of the hypervisor on a Siemens S7-1518 MFP PLC [9] 
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The S7-1500 controllers – including the S7-1518 MFP – can host an OPC UA server, which can be used 

to expose the PLC’s state to clients. The variables in the PLC’s data blocks, function blocks, and organisation 

blocks (OBs) can be set to “accessible from OPC-UA server” via the TIA Portal – Siemens’ proprietary 

programming interface. This setting allows OPC UA clients to connect to, write to, and read from the server. It is 

possible to secure OPC UA connections using encryption and require clients to authenticate with a password. 

The Siemens S7-1518 MFP PLC is not certified for use in nuclear facilities. However, in the future, devices 

that are like the S7-1518 may be introduced into facilities to support the control of non-safety processes, while 

enabling advanced on-device computation and data sharing that is supported by features such as the C++ Runtime. 

3.2 The Asherah hypothetical NPP and pressurizer control 

The PLC-based detection system has been evaluated using the hypothetical Asherah Nuclear Power Plant 

(NPP), which has been developed as part of the IAEA Coordinated Research Project (CRP) J02008. At the core 

of the Asherah NPP is a MATLAB/Simulink model of a Pressurized Water Reactor (PWR) that can be interfaced 

with external (to the model) systems, such as controllers. In this way, PLCs can control modelled processes. This 

feature enables cyber-attacks, which aim to sabotage a controlled process, to be executed against representative 

hardware devices and their consequences manifest in the model. For our experiments, we interface the Asherah 

model with two PLCs:  a Siemens S7-1518 MFP and an older Siemens S7-400 PLC, which we use to control the 

pressurizer pressure level. 

The purpose of a pressurizer in a PWR is to maintain the coolant (water) pressure in the reactor coolant 

system at a level such that it does not boil, i.e., such that it remains in a liquid state. The pressurizer is a large 

vessel that is filled with water to approximately a third of its height. To affect the pressure, there are two types of 

heaters in the bottom of the vessel that can heat the water to increase the pressure (so-called proportional and 

backup heaters); meanwhile, there are two spray valves in the top of the vessel that can spray cold water to reduce 

the pressure. In the Asherah model, the nominal pressure of the pressurizer vessel should be 15.1 Megapascals 

(MPa). The PLC implements control logic that uses the actuators to control the pressure level at the target setpoint. 

A summary of the control behaviour that is implemented by the PLCs is shown in Fig. 2. 

 
Fig. 2. A summary of the control behaviour for managing the pressure in the pressurizer vessel in the Asherah model 

 

4. GOOSEWOLF: PLC-BASED INTRUSION DETECTION SYSTEM 

The intrusion detection system that has been developed for the Siemens S7-1518 MFP PLC, called 

Goosewolf, is described in this section, along with an anomaly detection algorithm that can be executed on the 

PLC to identify when an attacker is attempting to sabotage the operation of a process, such as a pressurizer. 

4.1 The Goosewolf intrusion detection system 

Goosewolf is the (arbitrary) name of a C++ program that has been developed for the C++ Runtime of a 

Siemens S7-1518 MFP PLC to detect when an adversary has manipulated the process control of the PLC logic. 
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The main features of Goosewolf are monitoring the PLC’s execution, logging security events, and sending security 

alerts to external computers. The Goosewolf program connects as a client to the S7-1518 PLC’s OPC UA server 

(see Section 3.1). This connection between the C++ Runtime and the CPU Runtime is not exposed to the network, 

as it is handled internally by the hypervisor. Once a connection to the OPC UA server is established, the tags in 

the server can be accessed using the UA_NODE_STRING method. These tags are the same variables that are found 

in the PLC’s data block. The program checks the variables from the OPC UA server against “golden values” – 

those that represent idealized normal operation – every second. A summary of the main features that are checked 

and logged by the Goosewolf program are summarized in Table 1. By monitoring these features, Goosewolf aims 

to identify two main issues: (i) when there are abnormalities in the controlled process (the pressurizer); and (ii) 

there are changes in the PLC’s state, which could indicate an attack. 

 
TABLE 1. A SUMMARY OF THE FEATURES THAT ARE MONITORED BY GOOSEWOLF 

 Feature 

P
ro

ce
ss

 

Control actions that could result in the physical process being in a hazardous state 

Pressure values dynamics – stationary values could indicate problems 

Setpoints that are associated with the control logic (see Fig. 2) 

P
L

C
 

Cycle time (the time to execute the program’s organization and function blocks) 

Program checksum 

Program file size 

PLC state (determining whether the PLC is in RUN mode) 

 

The operation of Goosewolf can be summarized, as follows. If the PLC is operating normally there are 

three logs generated every time the Goosewolf program is executed: init.log, conn.log, and cycles.log. Init.log 

logs the initial time of the program’s execution. Conn.log logs the time of the first connection to the OPC UA 

server. Thereafter, each time that data is processed, cycle time information is logged in cycles.log. This includes 

the most recent cycle time for OB1 (the main user program), the longest full program cycle, the shortest full 

program cycle, and the most recent full program cycle. Like init.log and conn.log, each entry has a timestamp. In 

addition to the logs that are created under normal conditions, there are logs for abnormal operating conditions, 

hazardous control actions, and program change detection (aoc.log, hca.log, and proginf.log, respectively). This 

operation is summarized in Fig. 3. 

 

 
Fig. 3. An overview of the communications and functions of the CPU and C++ Runtimes of the Siemens S7-1518 

MFP PLC running Goosewolf 

 

Abnormal operating conditions are detected by comparing the constant values in the PLC program to the 

nuclear engineering documentation for the pressurizer – the aforementioned “golden values”. If these constants – 

which dictate when and how rapidly the heaters and spray valves turn on and off – are different to the 

documentation, then a log entry is created in aoc.log. If the backup heaters, proportional heater, or spray valves 
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are turned fully on, a log entry is created in aoc.log. This is because the pressurizer is operating at its upper and 

lower limits which, if not controlled, could lead to problems in the pressurizer vessel. Furthermore, if the pressure 

value is unchanged for five seconds, Goosewolf assumes that the PLC is not receiving the correct, up-to-date, 

pressure value and creates a log in aoc.log. This assumption is based on the expectation that relatively small 

deviations in pressure are expected over time; an absence of these deviations could indicate a problem with the 

PLC, for example. 

Hazardous control actions are defined as actions that further facilitate under- or over-pressure in the 

pressurizer vessel, i.e., control actions that do not conform to the control narrative that is depicted in Fig. 2. The 

pressure value is compared to the proportional heater, backup heater, and spray valve values to make sure that 

control actions are appropriate. For example, if the pressure is at the setpoint of 15.1 MPa, the main heater should 

be at 50% output. However, if the heater value returns 0%, this would mean that the control is further facilitating 

a low-pressure state. Likewise, if the backup heater is on when the pressure is at the setpoint of 15.1 MPa, this 

could facilitate a dangerous increase in pressure. Therefore, these are hazardous control actions. The same check 

is done using the pressure value and the values from the spray valves. 

PLC program information that is checked includes the program size, cycle times, and a program checksum. 

Program information is logged in proginf.log. Cycle times are logged (along with a timestamp) in cycles.log. The 

cycle times include OB1’s most recent cycle time, the longest full program cycle time, the shortest full program 

cycle time, and the most recent full program cycle time. Cycle logging is for post-incident analysis, as there is no 

processing or interpretation of the cycle times in the C++ program. The Siemens checksum function is a checksum 

of all “non-safety” blocks in the program. The pressurizer logic contains no safety blocks; therefore, the checksum 

encompasses the full user program. If there is a difference in the hard-coded checksum and that from the PLC, a 

log entry is created once. For every comparison thereafter, the checksum is compared to the hard-coded value as 

well as the last logged checksum. Only if it is unique to both checksums is another log entry created. This is to 

avoid having multiple log entries for the same checksum and to reduce log size. The program size (in kilobytes) 

is checked against the hard-coded program size. If there is a change in size, a log entry is created. This is 

implemented in the same way as the checksum, in which there is only one log entry for each time the program 

size changes. 

In addition to the log files that are generated, selected abnormalities that have been identified by Goosewolf 

result in an alert being generated and transmitted via the network to a pre-configured destination. Alerts are 

generated when a change in the PLC state has been detected and when abnormal or hazardous control actions are 

identified. The alerts can then, for example, be ingested by a Security Information and Event Management (SIEM) 

tool for processing by an operator.  

4.2 Detecting false data injection attacks 

To sabotage the operation of a process, an adversary can conduct an FDIA on the PLC. An FDIA involves 

the adversary manipulating sensor measurements, which the PLC uses for control, to cause incorrect control 

actions to be applied. In the example considered in this paper, an adversary could manipulate sensor data about 

the pressurizer state (pressure) to cause the PLC to incorrectly engage the spray valves or heat banks, to cause 

under- or over-pressure.  

To detect these forms of attack, a localized Auto-Associative Kernel Regression (AAKR) model has been 

developed. (This model has proven to be effective in detecting FDIAs in previous work [10].) AAKR is a 

nonparametric, memory-based algorithm that predicts expected measurements by calculating a weighted average 

of a memory matrix. This is a matrix that has been created using a fault-free training data set that represents the 

normal behaviour of a system. Let 𝑿 denote the memory matrix and 𝑋𝑖,𝑗 is the 𝑖th observation of the 𝑗th variable 

from the process under consideration (e.g., the pressurizer pressure); 𝑛𝑚 is the number of the memory vector and 

𝑝 is the number of variables:  

𝑿 =

[
 
 
 
 
𝑋1,1 𝑋1,2 … 𝑋1,𝑝

𝑋2,1 𝑋2,2 … 𝑋2,𝑝

⋮
𝑋𝑛𝑚,1

⋮
𝑋𝑛𝑚,2

⋱
…

⋮
𝑋𝑛𝑚,𝑝]

 
 
 
 

 

The new input data point, which needs to be predicted is called the query vector 𝒙: 
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𝒙 = [𝑥1 𝑥2 …   𝑥𝑝] 

The similarity of the query vector and the memory matrix is measured by the distance between them – here the 

Euclidean distance 𝑑𝑖  is utilized: 

𝑑𝑖 = √(𝑋𝑖,1 − 𝑥1)
2
+ (𝑋𝑖,2 − 𝑥2)

2
+ ⋯+ (𝑋𝑖,𝑝 − 𝑥𝑝)

2
 

Subsequently, the weights of each memory vector are calculated; ℎ is the Gaussian Kernel that can be optimized 

by the user: 

𝑤𝑖 = 𝑒
−𝑑𝑖

2

ℎ2⁄
 

The predicted value of the query vector is obtained using the following equation: 

 

𝑥̂ =
∑ (𝑤𝑖  𝑋𝑖)

𝑛𝑚
𝑖=1

∑ 𝑤𝑖
𝑛𝑚
𝑖=1

 

 

To detect an attack using the predicted value 𝑥̂, the residual between the prediction and the measured values 

(i.e., that communicated to the PLC) is calculated. A threshold for the residual can be defined that indicates the 

measurements are anomalous – i.e., are understood to be manipulated. In the study presented herein, 𝑝 = 5 and 

the variables that are used for detection are the (i) pressurizer pressure, (ii) spray valves state (%) – there are two 

spray valves in the model, (iii) proportional heater state (%), and (iv) backup heater state (a binary value). These 

values are available at the PLC and can be collected from the CPU Runtime using the OPC UA server on the S7-

1518. The number of entries in the memory matrix that is used in this study and our evaluation is 𝑛𝑚 = 3458. 

This state needs to be stored in the C++ Runtime of the PLC to enable the similarity (distance) between the query 

vector (measurement set) and the memory matrix which is calculated off-line in advance. This results in a file size 

of approximately 4Kb that can be readily stored on the PLC, which has 256Mb of storage available. 

5. EVALUATION 

5.1 PLC real-time performance concerns 

A concern when implementing an IDS on a PLC is the potential affect that it may have on the control 

functionality provided by the device. Specifically, implementing anomaly detection algorithms, such as AAKR 

described in Section 4.2, has the potential to affect the performance of the real-time CPU Runtime on the PLC. 

This could be problematic when the PLC is controlling processes that have strict real-time requirements. To 

evaluate the potential for any such impact, a computational stress test on the Siemens S7-1518 MFP PLC was 

conducted [11]. To achieve this, a C++ program was implemented that repeatedly calculates MD5 hashes of large 

bodies of literary work from William Shakespeare – a relatively computationally expensive task. This program 

was executed in the C++ Runtime of the S7-1518 PLC while CPU Runtime cycle times were collected using the 

OPC UA interface on the S7-1518. In these experiments, the CPU Runtime of the PLC is executing the control 

algorithm that is used to manage the Asherah pressurizer (see Fig. 2). The results of this exercise are presented in 

Fig. 4, which shows the moving average value of the CPU Runtime cycle times (in nanoseconds) over time. 
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Fig. 4. CPU Runtime cycle times under normal conditions and while stress testing the C++ Runtime 

 

It can be seen from the results that are presented in Fig. 4 there is no discernible impact on the CPU Runtime 

cycle times, which could be caused by the hashing program being executed. This result suggests there should be 

no impact on the real-time performance of the CPU Runtime on the S7-1518, which could be caused by executing 

an IDS in the C++ Runtime. This result indicates that the implementation of the hypervisor functionality in the 

Siemens S7-1518 MFP can correctly manage the resource utilization of the C++ Runtime, such that it does not 

affect the CPU Runtime of the device. 

5.2 Process anomaly detection using AAKR 

To evaluate whether the AAKR model that is presented in Section 4.2 can detect FDIAs that aim to subvert 

process control, we have conducted experiments with a Siemens S7-400 PLC and the Asherah 

MATLAB/Simulink model. The AAKR model was implemented using MATLAB.  

As described in Section 3.2, the PLC is used to control the behaviour of the pressurizer in the model. We 

used the S7-400 for this experiment, as it communicates with an older version of the Siemens S7Comm control 

protocol that does not support, amongst other shortcomings, authentication of endpoints and integrity checking of 

messages. (The S7-1518 does support these features with a newer version of the S7Comm protocol, although 

progress has been made to subvert it [12].) This deficiency enables us to perform a so-called Man-In-The-Middle 

(MITM) attack on the communications between the Asherah model and the PLC. This attack enables an adversary 

to inspect, manipulate and drop the communication between two endpoints from a third device. In our 

experiments, the MITM attack is used to manipulate the pressurizer pressure values that are communicated to the 

PLC from the Asherah model. This arrangement is depicted in Fig. 5. In a real-world deployment, this 

communication could be between a Distributed Control System (DCS) and a PLC, or between a Remote Terminal 

Unit (RTU) that is collecting sensor data (e.g., pressurizer pressure) and a PLC or DCS, for example. 

 

To define 𝑿 – the memory matrix for the AAKR model – nominal data from the pressurizer was collected 

from the Asherah model. As mentioned in Section 4.2, this data includes the pressurizer pressure, the state of the 

two spray valves, and the proportional and backup heater state. To generate test (attack) data for the AAKR model, 

Asherah

Model

Siemens

S7-400 PLC

Attacker

Computer

Network

Switch

10100010101

01011010101

Normal

Communication

Compromised

Communication

Fig. 5. An overview of the MITM attack between the Asherah model and the Siemens S7-400 PLC 



DAVID ALLISON et al. 

 
9 

we collected the same type of data from the PLC, which includes a period of nominal behaviour and then 

introduces the FDIA after 2060 observations. The FDIA changes the pressurizer pressure value to indicate under-

pressure in the vessel. This behaviour is depicted in Fig. 6, which shows the pressurizer pressure (Pa) (Fig. 6a) 

and the setpoints for the proportional heater and spray valves (%) (Fig. 6b). As the pressurizer pressure is 

manipulated to indicate under-pressure, the PLC attempts to compensate by setting the proportional heater to 

100% and engages the backup heaters. The short peaks that can be seen during the attack relate to untampered 

data reaching the PLC, due to shortcomings of the MITM attack implementation (i.e., temporarily, the MITM 

attack fails, allowing untampered data to be communicated directly between the Asherah model and the S7-400 

PLC). As this occurs, there are two interesting observations: (i) the actual pressure in the pressurizer is increasing, 

because of the attack, as indicated by the increasing peak pressure levels that are observed during the attack period; 

and (ii) the PLC briefly disengages the proportional heaters and fully-engages the two spray valves to mitigate the 

over-pressure situation in the pressurizer.  

 

 

Fig. 6. The (a) pressurizer pressure level (Pa) and (b) main heater (%) and spray valve settings (%) during the FDIA 

attack on the S7-400 PLC. The FDIA starts at 2060 seconds. 

 

 
Fig. 7. False data injection scenario detection results using the AAKR model 

 

Fig. 7 shows the detection results during the pressurizer FDIA using the AAKR model. The solid blue line 

in Fig. 7a show the residuals (i.e., differences) between the predicted values from the AAKR model and the values 

that are collected (measured) from the attack computer. (For the proposed PLC-based IDS, the measured values 

would be collected from the CPU Runtime by the Goosewolf program.) Meanwhile, the dashed red line in the 

figure depict a threshold – residuals that exceed these thresholds are deemed to be anomalous, which could 

indicate an attack. In the MATLAB implementation of the AAKR model, when the residuals exceed the 

thresholds, a hypothesis of ‘1’ – an alarm – is generated, as shown in Fig. 7b. In the experiments, the AAKR 

model starts generating alarms at approximately observation 2060, which corresponds to the start of the FDIA. 

These initial results indicate that the AAKR model can correctly detect the FDIA to the PLC.  

6. CONCLUSION AND FUTURE WORK 

Nuclear facilities are increasingly making use of digital technologies. This has many benefits, but it also 

introduces the potential for new forms of cyber-attack. A pernicious form of attack aims to sabotage the operation 

of facility systems and functions that, for example, ensure continued safe operation of facility processes. To realize 

these forms of attack, an adversary can manipulate the behaviour of I&C systems, including devices such as 

Programmable Logic Controllers (PLCs). This is non-trivial and should require an adversary to compromise 
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several other systems before reaching a target that enables process manipulation. This need to compromise other 

systems, which are arranged using a defence-in-depth approach, gives a defender the opportunity to detect 

adversarial behaviour. However, for several reasons, an attack may not be detected prior to targeting I&C systems. 

To address this issue, this paper has proposed a system for intrusion detection that can execute on state-of-

the-art PLCs. The aim of the system is to provide a last line of defence against an attack. The system, called 

Goosewolf, can detect the manipulation of user-defined PLC functionality and tampering of data, e.g., as part of 

a False Data Injection Attack (FDIA). Goosewolf itself is potentially susceptible to attack. Nevertheless, it has 

several potential benefits and makes it more challenging for an adversary to attack PLCs in a manner that remains 

undetected. Furthermore, we propose that Goosewolf does not introduce a significant new attack surface, if 

configured securely. Initial results, which leverage a hardware-in-the-loop testbed that integrates real PLC 

hardware with a simulated nuclear facility, suggest the system can operate without affecting the control behaviour 

of the PLC, and an approach to detecting FDIAs is effective and could execute directly on the PLC. 

Future work includes a more complete analysis of the AAKR model, which is used to detect FDIAs, to 

examine its detection performance in the presence of “stealthier” FDIAs. Furthermore, the AAKR model will be 

implemented in C++ and integrated into the Goosewolf program. Finally, deployment guidelines for Goosewolf 

will be developed, such that it can be securely integrated into a facility’s defensive computer security architecture.

  

ACKNOWLEDGEMENTS 

The research leading to these results has received funding from the IAEA as part of the CRP J02008 on 

Enhancing Computer Security Incident Analysis at Nuclear Facilities. 

REFERENCES 

[1] JIN, C., VALIZADEH, S., VAN DIJK, M., “Snapshotter: Lightweight intrusion detection and prevention system for 

industrial control systems”, IEEE Industrial Cyber-Physical Systems (ICPS), St. Petersburg (2018). 

[2] GARCIA, L., ZONOUZ, S., WEI, D., PFLEGER DE AGUIAR, L., “Detecting PLC control corruption via on-device 

runtime verification”, Resilience Week (RWS), Chicago (2016). 

[3] GOH, J., ADEPU, S., TAN, M., LEE, Z.S., “Anomaly detection in cyber physical systems using recurrent neural 

networks” IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), IEEE (2017). 

[4] GOH, J., ADEPU, S., JUNEJO, K. N., and MATHUR, A., “A dataset to support research in the design of secure 

water treatment systems”, International Conference on Critical Information Infrastructures Security, pages 88–99. 

Springer, (2016). 

[5] EGGERS, S.L., “Adapting anomaly detection techniques for online intrusion detection in nuclear facilities”, PhD 

thesis, University of Florida (2018). 

[6] ZHANG, F., KODITUWAKKU, H., HINES, J.W., COBLE, J., Multi-layer data-driven cyber-attack detection 

system for industrial control systems based on network, system and process data, IEEE Transactions on Industrial 

Informatics 5 7 (2019) 4362–4369. 

[7] ZHANG F., HINES, J.W., COBLE, J., “A robust cybersecurity solution platform architecture digital instrumentation 

and control systems in nuclear power facilities”, Nuclear Technology (2019). 

[8] ZHANG, F., HINES, J.W., COBLE, J., “Industrial control system testbed for cybersecurity research with industrial 

process data”, International Congress on Advances in Nuclear Power Plants (ICAPP 2018), Charlotte, NC, USA 

(2018). 

[9] SIEMENS AG, SIMATIC S7-1500/ET 200 CPUs Highlights FW2.5 with TIA Portal V15 (2018), 

https://www.totallyintegratedautomation.com/wpcontent/uploads/2018/04/Siemens-Advanced-Controllers-

Webinar_Apr-25-2018.pdf. 

[10] ZHANG, F., PAYNE T., HINES J.W., COBLE, J., “Enhancing the resilience of key Equipment to false data injection 

attacks in NPPs”, ANS Winter Meeting 2019, Washington, DC, USA, November (2019). 

[11] ALLISON, D.M., “Utilising the multi-functional platform of the Siemens S7-1518 PN/DP MFP programmable logic 

controller for security applications”, M.Sc. Thesis, Queen's University Belfast, Belfast (2019). 

[12] LEI, C., DONGHONG, L., LIANG, M., “The spear to break the security wall of S7CommPlus”, Blackhat USA, Las 

Vegas USA (2017). 


