

Development of the 435-B(U) Packaging for Radioactive Source Recoveries in International Locations

February, 2020

Mark Wald-Hopkins Rebecca Coel-Roback Los Alamos National Laboratory

Temeka Taplin National Nuclear Security Administration

Global Material Security

Introduction

- The Off-Site Source Recovery Program (OSRP)
- History and Background of 435-B
 - Design and Development
 - Testing
 - Manufacturing
 - Operations

OSRP Mission and Accomplishments

Mission: Recover excess, unwanted, abandoned, and orphaned radioactive sealed sources in the interest of global security and public health/safety

- OSRP has contributed to national and global security by removing more than 43,000 radioactive sources, totaling over 1.3 million curies (49,776 TBq) of material.
- OSRP has removed sources from 27 countries worldwide.

Isotope	Sources Recovered	TBq Recovered
⁶⁰ Co	6,741	12,614
⁹⁰ Sr	303	23,701
¹³⁷ Cs	5,397	12,163
²³⁸ Pu	2,528	587
²³⁹ Pu	1,185	49
²⁴¹ Am	24,551	648
All Others	2,988	14
TOTALS	43,693	49,776

OSRP is sponsored by the NNSA Office of Radiological Security (ORS), NA-212

Cat 1 and 2 Devices Commonly **Recovered by OSRP**

Self-shielded irradiators, primarily Cs-137 and Co-60, 4.81 TBq to 148 TBq decayed

Protect · Remove · Reduce

Type B Container Development

- In 2004, the U.S. NRC revised regulations to harmonize with the IAEA's 1996 edition of "Regulations for the Safe Transport of Radioactive Material" (IAEA Safety Standards Series No. TS-R-1).
- As a result, a number of Type B packaging models used by OSRP and industry for Type B shipments were phased out of use in October 2008.
- This limited the number available Type B containers and increased the costs of Type B shipments while demand was increasing.

The 20-WC was a Type B packaging in common use prior to the regulation change

Type B Container Development

- NNSA's Office of Radiological Security directed OSRP to design, test, certify and fabricate new Type B container models in anticipation of upcoming shortages of compliant containers.
- NNSA and OSRP began work on two type B containers in 2009.
 - The 435-B, a smaller, non-shielded packaging.
 - The 380-B, a large, shielded packaging.
- OSRP worked with federal entities, industry experts, the IAEA and a other stakeholders over the course of a decade to bring the new models into operation.

Design and Development of 435-B

435-B Development History

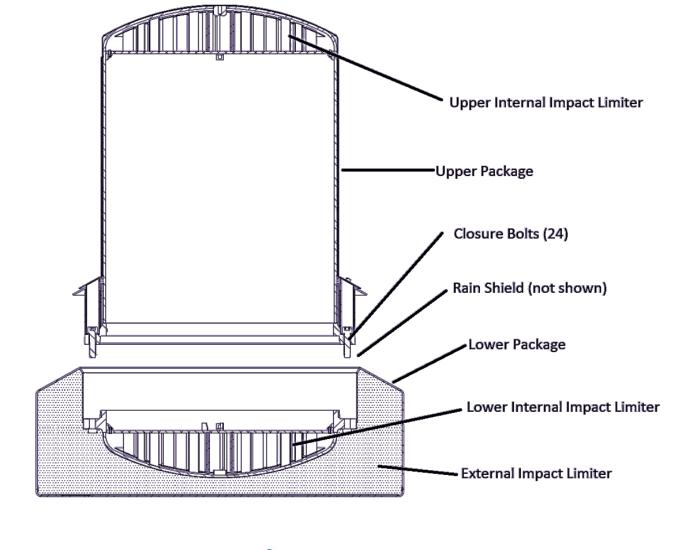
2009: Project Funding Approved 2011: Prototype Drop Testing 2013: SAR submitted to USNRC 2014: Design approved by USNRC 2016: First two units fabricated 2018: First use of the 435-B 2019: Third unit donated to IAEA 2019: Fourth unit fabricated

435-B Design

Based on previously certified containers.

Design criteria/parameters

- Leak-tight Normal Condition of Transport (NCT) and Hypothetical Accident Conditions (HAC)
- Transportable by truck, rail, ship, air
- External dimensions 211 cm H x 178 cm outside diameter (OD)
- Internal Cavity 152 cm H x 110 cm inside diameter (ID)
- Gross weight 4,490 kg (2,636 kg empty)
- 480 TBq Co-60, 200 Watts

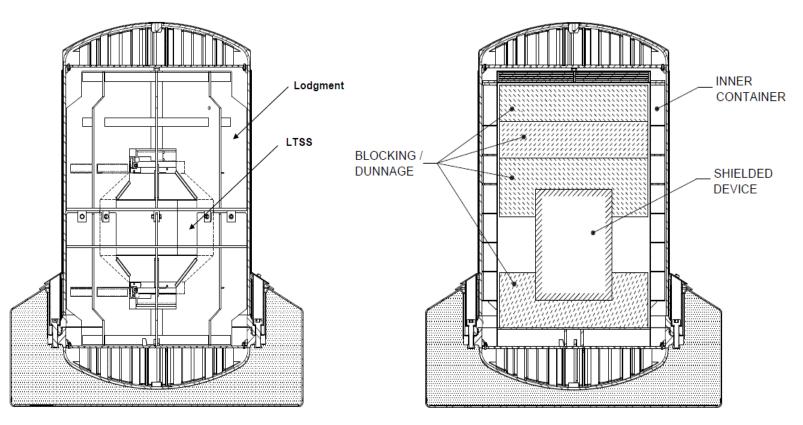


435-B Design

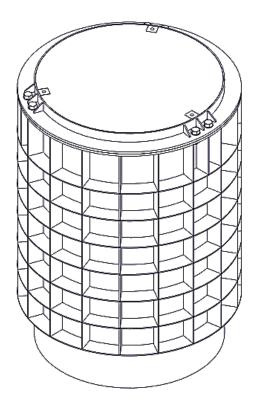
435-B Payloads

- For transportation of
 - The LTSS with a lodgment
 - The disposal canister with a lodgment
 - A large shielded device with a lodgment
 - A shielded device inside an inner container
- Maximum activities:

Nuclide	Maximum Activity (TBq)
Co-60	480
Cs-137	1000
Sr-90	37
Ra-226	0.7
Ra-226/Be	0.2
Ir-192	7
Se-75	3

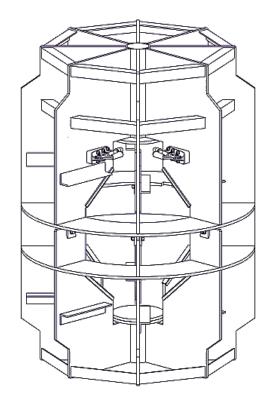


Cross-sectional View with Payloads


435-B with LTSS

435-B with shielded device

Bracing Components for Payload


Inner Container for Shielded Devices

LTSS Lodgement

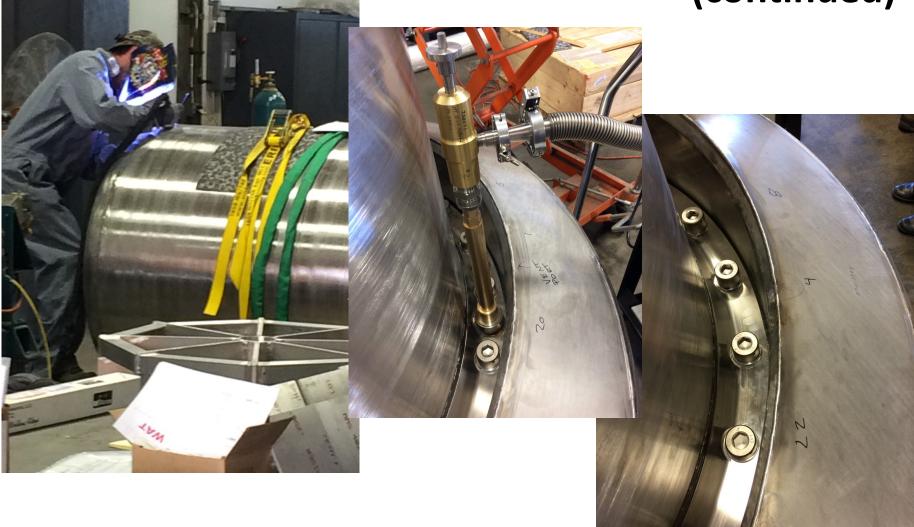
Authorized Content

- Because the 435-B packaging relies on the source retention and shielding properties of the payloads under both NCT and HAC, they must be evaluated prior to being added as authorized content.
- Current authorized content includes:
 - LTSS
 - Disposal canister
 - Gammator Series
 - Gammacell 1000
 - Gammacell 3000
 - Gammacell 40
 - IBL 437C
 - Hopewell Designs shielded devices

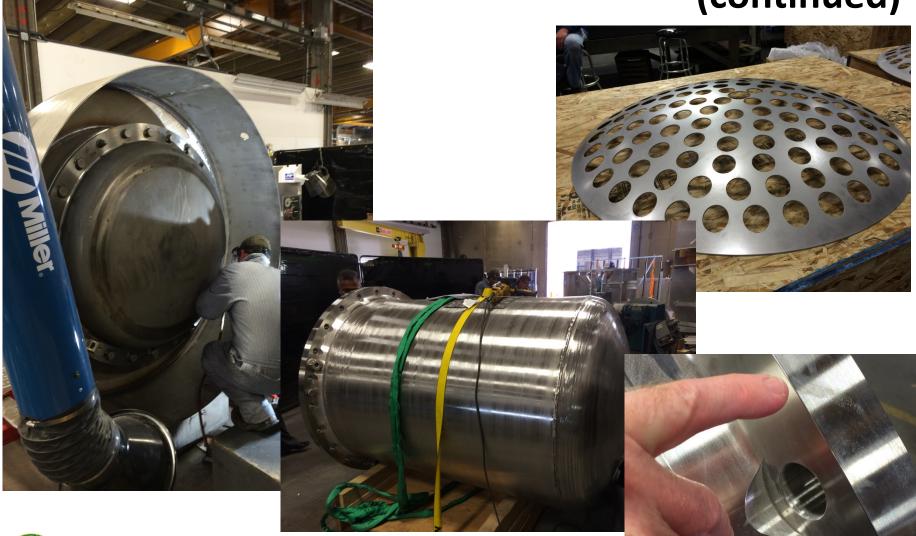
435-B Testing

Manufacturing the 435-B

- Fabrication started in November 2015
- Four units fabricated to date
 - Two are being operated by Idaho National Laboratory
 - One has been donated to the IAEA
 - One will be operated by Los Alamos National Laboratory



Manufacturing the 435-B (continued)



Manufacturing the 435-B (continued)

435-B Operations

Security

First Recovery: March 2018

NATIONAL LABORATORY

- EST.1943 -

Protect · Remove · Reduce

IAEA Collaboration

IAEA's mobile hot cell

LTSS mated to mobile hot cell

- In the early phases of container development, OSRP worked with the IAEA on design requirements
- International recoveries were anticipated using the IAEA mobile hot cell to disassemble and consolidate sources from highactivity devices
- The LTSS is designed to mate with the mobile hot cell to safely pull sources into the LTSS for transportation or storage

Global

Questions?

