

A Proposed Design for Illumination and Cameras Surveillance System for Optimum Supervision at a Perimeter Area of Nuclear Facility ICONS2020

Ass. Prof. Dr. Amir Abdel Wadoud Second Research Reactor (ETRR-2) of Egypt Egyptian Atomic Energy Authority (EAEA) Vienna, Austria,

Introduction

The nuclear facilities which have big site; like Research Reactors Complexes have an **Isolation Zone (IZO)** surrounded by **double fences long distances (km)** around the perimeter areas of the facility.

•IZO are the first Security barriers against the adversaries, and works like a skin for human body so, it very important, further,

•IZO contains the Intrusion Detections Systems and surveillance camera system for early detection and alarm assessment.

Surveillance Camera System and Guards on-site needs suitable illuminations for monitoring the perimeter areas.

Research Reactors Complexes

Many types of Cameras

- •IP/IR cameras
- Day & Night
- Thermal
- High sensitivity

Many different Types of Lampas

- Fluorescent
- Incandescent
- Mercury Vapor
- Metal Halide
- High Pressure Sodium (HPS)
- Low Pressure Sodium (LPS

The long distances of IZO forms a challenge because it needs: Big Numbers of Cameras and Lamps units . It costs us a lot

(IZO) at Perimeter Area

Determination of optimum cameras and light, and using of a suitable light and cameras, and exact numbers this will save and reduces the cost,

if select a regular and low cost cameras and Exact light this will

Reduce the installation cost
 Reduce maintenance cost and Running cost

This Paper Presents:

The Exact and calculations for IZO

Sufficient illumination and Lux amount needed
 Determination of Suitable type of Security light
 Cameras Parameters Calculations
 Tech., Specifications for Light pulps and Cameras

Determination of Suitable Security light

- Many different types of
- lamps used in modern
- protective lighting systems
- **Depends on some factors**
- Fluorescent (high flicker rate)
- Incandescent
- Mercury Vapor
- Metal Halide
- High Pressure Sodium (HPS)
- Low Pressure Sodium (LPS) Requires special disposal methods and it
- is Tend to Distort colors

Some factors must be considered in selecting lamp type such as:

- The lumens per watt
- Color Rendering
- Focusing Capability
- Warm-up Time
- Restrike Time
- وميض Flicker Rate •

• Lamp Life

In this paper presents a comparison between different types of lamps to select the suitable and optimum lighting for cameras surveillance systems, each of fluorescent and LPS types, are

Comparison of Lamps Types Properties

Property	HP	Metal	Mercury	Incandescent
	Sodium	Halide	Vapor	
	Lamps			
Watt	35-1000	50-2000	40-1250	To 3000
LM/Watt	80-140	80-100	45-63	10-38
Warm up time	2-5	5-8	5-8	0
	Minute	Minute	Minute	Minute
Restrike Time	1	10-20	10-20	0
	Minute	Minute	Minute	Minute
Color Rendition	Fair to	Excellent	Fair to	Excellent
	Good		Good	
Focusing	Good to	Good	Good	Good to
	Excellent		nin Kolmen	Excellent
Cost	Medium	High	High	Low
Lamp Life	2.5-6	1.3-5	3-6	0-25-0.875

According the comparison between lamps types and depending factors: HP lamps are the suitable light for the IZO at perimeter area

Isolation Zone Illumination Calculations

IZO Length=1180 meters, Wide=10meters, the equations of
•Poles Span "S": Distance between two Electric Poles
S /2 = 2 (1.05H), H=8 from Isolox curve of light distribution
S = 4 (1.05H) = 4 * 1.05*8 = 34 meters

•Total Number of Poles =IZO Length/ Pole's Span No of Poles = 1180meters /34 meters = 35 Poles

•Average Lighting Level Calculations Eav= (U.F* M.F* Lumen) / (D* W),

- Eav : (Average Lighting Level)
- **D**: Distance between two poles in meter **W**: Area width in meter
- Lumen : Flux per lamp (26000 from the selected lamp characteristics)
- U.F: Utilization factor (= 0.35 from utilization curve)
- M.F: Maintenance factor (= 0.8 from selected lamp characteristics)

Results: Average Lighting Level (E_{av}) = 21 Lux equivalent 250watt Minimum Lighting Level (E_{min}) = Eav/3=7 Lux

Isolox curve of light distribution

Illumination Distribution and Poles Types

Electric Pylon Location and Dimensions

Camera Parameter Calculations

- Lens Format,
- •Lens focal length calculation,
- •F Stop-Number,
- Width of images sensitive area
- •Angle of view calculation,

 1.Lens Format of Cameras,
 1/4-Inch format

 2.Lens Focal Length
 W=3.6/f ×L (m);
 H=2.7/F×L (m)

 f length focal lenth, W=width of subject, H=height of subject

 1.F Stop-Number = Focal Length÷Lens/Aperture Opening in mm

 Ratio between lens focal length (50mm) and aperture opening

 If aperture opening is 27.7 the F-Stop = 1.8

4. Width of Images Sensitive Area: D=W (f/w) 5. Angle of view (I/2)

$$\theta = 2 \tan^{-1} \left(\frac{I/2}{f} \right)$$

Results 1: Lighting Calculations (250watts HPS Lamp)

Item				Lighting				Lighting
\mathbf{i}				level	Min/	Min/		level
	Pole	Poles	Tilt	Eav	Eav	Emax	No of	Emin
Area	height	span	angle	(LUX)	U1	U2	Poles	(LUX)
Isolation				21				
zone	8	34	15	250watt	32	0.16	35	7
				HPS				

Results 2: Camera Parameter Calculations (Day/Night)

Item Area	Lens format	Lens focal length	F-Stop Number	subject Height (H)	Images sensitive area (W)	Angle of view (θ)	Cameras Number
Isolation zone	1/4'' Inch	50 mm	1.8	6.4 m	4.1	5.26 degree	15

Final Results Optimum Supervision Perimeter Area

