MCR & DTI [523]

Design for the Distributed Data Locator Service for Multi-site Data Repositories

presented by Nakanishi H.

National Institute for Fusion Science (NIFS), NINS, Japan

on behalf of NIFS, NII, and QST research collaborators

12th IAEA-TM CODARP in Daejeon, Korea, 13-17 May 2019

Backgrounds and Objectives

- Massive data analyses need high-bandwidth, low-latency data access to storage.
 - Need a super-computer cluster together with a huge, local data storage
- For ITER huge data analyses,
 - ➢ JA-DA will prepare huge computer & storage at ITER REC in Rokkasho.
 - > Inter-continental data replication method has been well tested. \rightarrow cf. MMCFTP
- Fusion Virtual Laboratory in Japan gathers data from LHD + 3 remote sites.
 - \succ FVL shares a central storage & index DB \rightarrow will be a "SPoF" in accidents
 - Multi-tier storage can queue data at every stage, but Index DB should be always on service.
 - \rightarrow Index DB must be a redundant, distributed service by using **multi-master DB**.
- In this study, bi-directional replication between multi-master index DB has been designed and tested by using the LHD data system on FVL.
 - Bi-directional replication is enabled by "BDR extension" module for PostgreSQL version 9.4 and higher.

ITER UDA structure

ITER on-site data repository is a single substance. If having a replica, ...

12th IAEA-TM CODARP in Daejeon, 13-17 May 2019

cf. UDA architecture diagram "UDA user manual" (TPLTKG v2, 2018) 3

ITER UDA structure with remote repository

Data Access

Client

Index DB would be a single point of failure (SPoF).

ITER UDA structure with "replicated index"

How implement ?

- Postgres BDR has a loosely coupled shared-nothing multi-master design.
- Bi-directional replication (BDR) is an extension package of PostgreSQL version 9.4 and higher.
 - can be introduced into standard PgSQL by "CREATE EXTENSION bdr" command
- As BDR is based on the PgSQL logical replication, data will be modified by "row-based replication", neither by high-level statement-based nor by low-level log-based manners.
 - ✓ SQL statement based → via SQL proxy, such as "Pgpool-II"
 cf. Trigger based → Daemons run on both C/S, such as "Slony-I" & "Bucardo"
 - ✓ Log (i.e. binary block) based → PostgreSQL streaming replication
- BDR still has some constraints:
 - i. "Primary key" must be defined in every table. "OID" cannot be used.
 - ii. Data Definition Language (DDL) commands are not fully supported in BDR.
 - ➢ e.g. CREATE/DROP/ALTER DATABASE/ROLE/USER/GROUP/TABLESPACE/TYPE ...
 - iii. BDR solves transaction conflicts using a simple "last-update-wins" strategy.
 - \triangleright Replication interval is set to **2 seconds** for better throughput. \rightarrow quasi- Real-time sync.

LHD data system

- Different from ITER UDA, LHD adopts "recommend" type of Facilitator model.
 → 2-step data access with different protocols
- LHD storage has 3 layers: ① SSD array, ② HDD raid cluster, ③ Blu-ray library.

"Facilitator Model" for tripartite systems

LHD data system having 3 remote sites (now)

nies

LHD data system having 3 remote sites (mod.)

- If accident happened, each remote site can operate separately from the primary storage & index DB.
- When connection is back, queued data & index changes will be re-synchronized.

Remote Site (x3)

Performances of Postgres BDR

- BDR throughputs have been investigated between NIFS, Toki and REC, Rokkasho.
 - Round-trip time = 16.2 ms, connected via 20 Gbps 100 Gbps 10 Gbps link
 - Postgres BDR 9.4 servers := cpu: Xeon E5-2650 v4 2.2 GHz, 12c/24t, mem: 128 GB xfs: Samsung NVMe SSD 960 PRO 512GB
- Replicating a single record may take negligible small time (<< RTT) on average for usual operations, excepting 2 second queuing.

Table Name (# of tables)	# of records	elapsed time	per record	note
Ex_Note (5)	144 772	243.6 s	16.8 x 10 ⁻⁴ s	inserts
↑ BDR	144 772	23.1 s	1.60 x 10 ⁻⁴ s	(сору)
↑ no BDR	144 772	0.978 s	6.76 x 10 ⁻⁶ s	(local)
Setup (167)	11 577 821	971.6 s	0.84 x 10 ⁻⁴ s	
↑ no BDR	11 577 821	62.15 s	5.37 x 10 ⁻⁶ s	(local)
Index (22)	207 911 053	35 654 s	1.72 x 10 ⁻⁴ s	-F c -j 3
个 no BDR	237 544 798	581.5 s	2.45 x 10 ⁻⁶ s	-F c -j 3 (local)

Conclusions and Future works

- In order to put the replicated data repositories of practical use for massive data analyses, metadata Index DB should be also replicated for each repository site.
- Considering the compatibility of PostgreSQL, bi-directional replication extension Postgres BDR has been investigated and tested by using LHD Index data and FVL environment.
- BDR performance seems sufficient for usual data operations, excepting some global DDL commands.

In future works,

- A selection scheme for the most appropriate data repository site will be implemented soon in data retrieving client API and tested on LHD & FVL.
 - List of possible Index DBs can be stored and served by Index DB itself.
 - The best server can be found by practically measuring the network round-trip time (RTT) between C/S.
 - ✓ *e.g.* ICMP echo reply (ping) or TCP SYN+ACK response can be used.
 - ✓ DNS top domains or GeoIP resolvers provide answers with a very limited precision.

Thank you!