

Automatic recognition of anomalous patterns in discharges by recurrent neural networks

Gonzalo Farias¹ Ernesto Fabregas² Sebastián Dormido-Canto² Jesús Vega³ Sebastián Vergara¹

Daejeon, Republic of Korea, May 2019

GOBIERNO DE ESPAÑA

IO MINISTERIO NA DE ECONOMÍA Y COMPETITIVIDAD

AD Energéticas, Medioambientales y Tecnológicas

- □ Introduction
- Background
 - Anomaly Detection
 - Recurrent Neural Networks (LSTM)
- Proposed Solution
- **Results**
- Conclusions

LAEA Technical M

Control, Data Acquis ad Remote Participation

□ The experiments generate huge quantities of data. It is estimated that only 10% of this data is analyzed.

A shot of few seconds can generate huge quantity of data:

- **TJ-II** device has +1000 channels of measurements.
- A shot in **JET** can take around 10 seconds (**10 GB/shot**. around 100 TB/year).
- **ITER** could generate **1 TB/shot**. around 1 PB/year.

Background

□ The idea is to use Artificial Intelligence to deal with this data.

□ Create systems that allow specialists to analyze and interpret data more quickly and efficiently than manually.

GOBIERNO

DE ESPAÑIA

- **Background Anomalies**
- Anomaly: Something that deviates from what is standard, normal, or expected.
- □ One type of anomaly is known as 'outlier', which is a value located outside of the normal class.
- □ The other type of anomaly is an anomalous behavior, which is a **periodic collapsing phenomenon in time series**.

- □ We try to find anomalies in signals (known and unknown).
- **Unknown** (plasma behavior).
- **Known**: disruptions or L-H and H-L transitions.

ol, Data Acqu

Background – LSTM

AEA Technical

Control, Data Acqu

□ Recurrent Neural Network – Long Short Term Memory (LSTM)

* https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Forget gate layer $f_t = \sigma \left(W_f[h_{t-1}, x_t] + b_f \right)$

Input gate layer

$$i_{t} = \sigma \left(\boldsymbol{W}_{i} \left[\boldsymbol{h}_{t-1}, \boldsymbol{x}_{t} \right] + \boldsymbol{b}_{i} \right)$$

$$\widetilde{C}_{t} = tanh \left(\boldsymbol{W}_{c} \left[\boldsymbol{h}_{t-1}, \boldsymbol{x}_{t} \right] + \boldsymbol{b}_{c} \right)$$

$$C_{t} = f_{t} * C_{t-1} + i_{t} * \widetilde{C}_{t}$$

Output gate layer

$$o_{t} = \sigma \left(W_{o} \left[h_{t-1}, x_{t} \right] + \boldsymbol{b}_{o} \right)$$
$$h_{t} = o_{t}^{*} tanh \left(C_{t} \right)$$

Background – Forecasting (training stage)

PONTIFICIA UNIVERSIDAD

DE VALPARAISO

CATOLICA

Ciemat

Centro de Investigaciones

Energéticas, Medioambientale

v Tecnológicas

DUED

GOBIERNO DE ESPAÑA MINISTERIO

DE ECONOMÍA Y COMPETITIVIDAD

Training Progress (07-May-2019 11:57:40) Results

Validation RMSE: N/A Training finished: Reached final iteration Training Time Start time: 07-May-2019 11:57:40 Elapsed time: 6 sec RMSE Training (smoothed) Training Validation Loss Training (smoothed) Training Validation

Forget gate layer

$$f_t = \sigma \left(\boldsymbol{W_f}[h_{t-1}, x_t] + \boldsymbol{b_f} \right)$$

AEA Technical

Control, Data Acqu

Remote Partici

Input gate layer

 $i_{t} = \sigma \left(\mathbf{W}_{i} \left[h_{t-1}, x_{t} \right] + \mathbf{b}_{i} \right)$ $\tilde{C}_{t} = tanh \left(\mathbf{W}_{c} \left[h_{t-1}, x_{t} \right] + \mathbf{b}_{c} \right)$ $C_{t} = f_{t} * C_{t-1} + i_{t} * C_{t}$

Output gate layer $o_t = \sigma \left(\mathbf{W_o} \left[h_{t-1}, x_t \right] + \mathbf{b_o} \right)$ $h_t = o_t^* \tanh(C_t)$

*It adjusts the bias and weights to learn the shape of the waveform

Goals

General Goal

Anomaly detection using Recurrent Neural Network (LSTM - Long Short Term Memory).

Specific Goal

□ The LSTM Neural Network learns the waveform to detect anomalies through forecasting.

How the Anomaly is detected?

U We fix a **threshold** proportional to the **Standard Deviation** of the **Error**.

LAEA Technical M

Control, Data Acqui

Remote Participa.

th IAEA Technical Meet n Control, Data Acquisit nd Remote Participation

Fusion Researc

Anomaly Detection – Simultaneous (t=165)

th 1ALA Technical Ma Control, Data Acqui 1d Remote Participatio

Anomaly Detection – Simultaneous (Δt)

Anomaly Detection – Simultaneous (Δt)

Results

- Database from TJ-II Fusion Device
- □ 430 Shots with 9 signals each (80% for training, 20% for testing randomly selected)
- □ Training time (5 sec/signal and shot, GPU)
- □ Testing time (forecasting, ~10 sec/signal and shot, GPU)

originalData 🗙 data 🗙											
() 430x10 <u>cell</u>											
	1	2	3	4	5	б	7	8	9	10	
1	10104	65536x2 double	65536x2 double	6552x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
2	10107	65536x2 double	65536x2 double	32766x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
3	10108	65536x2 double	65536x2 double	32766x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
4	10109	65536x2 double	65536x2 double	10921x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
5	10110	65536x2 double	65536x2 double	9361x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
б	10112	65536x2 double	65536x2 double	8190x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
7	10114	65536x2 double	65536x2 double	9361x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
8	10115	65536x2 double	65536x2 double	9361x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
9	10116	65536x2 double	65536x2 double	9361x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
10	10119	65536x2 double	65536x2 double	9361x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
11	10120	65536x2 double	65536x2 double	9361x2 double	61440x2 double	65536x2 double	65536x2 double	65536x2 do	65536x2 double	30208x2 double	
	10101	CEEDE 2 (11	65556 3 4 LL	5460 3 4 11	64442 2 4 11	CCCCC 2 (11	655506 B (11	CEEDE D. C	CCCCC 2 (11	20200 2 / 11	

AEA Technical M

Control, Data Acqui

Remote Participo

Results □ Simultaneous Anomalies Detection in a Shot (Δt=1)

The wider is the band the less anomalies are detected

	K (th = K*STD)								
An _t	1	2	3	4	5	6	7	8	
1	190	109	67	40	21	11	8	6	
2	96	34	8	3	2	0	0	0	
3	49	11	4	0	0	0	0	0	
4	21	(1)	0	0	0	0	0	0	
5	4	0	0	0	0	0	0	0	
6	1	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	
9	0	0	0	0	0	0	0	0	

1 simultaneous anomaly in 4 signals for k=2 at given time (t)

h 1AEA Technical M Control, Data Acqui d Remote Participatio

Results

Simultaneous Anomalies Detection in Time Windows ($\Delta t=5$)

The wider is the band the less anomalies are detected

	K (th = K*STD)							
$An_{\Delta t}$	1	2	3	4	5	6	7	8
1	266	204	153	110	62	33	30	25
2	212	98	50	35	21	5	3	0
3	146	54	25	3	2	0	0	0
4	92	35	8	0	0	0	0	0
5	64	5	0	0	0	0	0	0
6	30	3	0	0	0	0	0	0
7	15	0	0	0	0	0	0	0
8	4	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0

4 simultaneous anomalies in 8 signals for k=1 with $\Delta t=5$

LAEA Technical

Control, Data Acqu

Remote Partici

*100 shots randomly selected

The more simultaneity is required, the less anomalies are detected. the less

Conclusions

- LSTM networks can learn the shape of a waveform (one model for signal).
- LSTM networks can be used for anomaly detection in signals.
- □ The specialists have to define the parameters to distinguish the noise from the real anomalies.
- □ It is possible to design supervised systems that allows the detection of previous detected/studied anomalies.

Automatic recognition of anomalous patterns in discharges by recurrent neural networks

Gonzalo Farias¹ Ernesto Fabregas² Sebastián Dormido-Canto² Jesús Vega³ Sebastián Vergara¹

Daejeon, Republic of Korea, May 2019

RNO MINISTERIO PAÑA DE ECONOMÍA Y COMPETITIVIDAD

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas