Real-time Classification of L-H transition and ELM in KSTAR

Gi Wook Shin^a, J. -W. Juhn^b, G. I. Kwon^b, and S.H. Hahn^{a,b} *a. University of Science and Technology (UST), Republic of Korea b. National Fusion Research Institute (NFRI), Daejeon, Republic of Korea* gwshin@nfri.re.kr

MOTIVATION

• It has been widely accepted that a **high confinement mode**(H-mode) operation is **necessary** for advanced tokamaks or ITER. However, when plasma is in H-mode, the edge localized mode(ELM) occurs at the plasma edge, which release particles and energy [1]. In case of ITER, a full tungsten divertor cannot tolerate the heat load from the type-I ELM [2]. Besides, in terms of plasma density feedback control, the fuel into the plasma cannot be absorbed by gas puffing only due to the edge **transport barrier** and the diagnostic values of the real-time plasma density are **abnormally observed by the ELM burst**. • In order to help to control these problems, we need an **algorithm that** can detect what the plasma mode is and make appropriate actuators activate, such as gas puff, Supersonic Molecular Beam Injection (SMBI) [3], and so on, according to the detected plasma mode. • From our previous study [4] on detection of the L-H transition in KSTAR, we showed the possibility of real-time detection with a SVM classifier trained through machine learning. • To overcome the previous results and to apply more suitable real-time **algorithm** in KSTAR practically, we trained neural networks based on **long** short-term memory (LSTM) [5].

RESULT

• In the previous study [4] using Support Vector Machine(SVM) [13], we obtained results about calculation time and accuracy for testset as follows.

	SVM classifier	LSTM classifier
Data set	2017 campaign data	2017 campaign data
	(139 shots)	(123 shots)
	2	4
Number of labels	2 (Land L mode)	(L-mode, intermediate state,
	(L- and H- mode)	H-mode, and ELM)
Calculation time	About 8 ms	About 250 us
per a sample	About o ms	About 250 μ s
Classification average		
accuracy for test set	74.47%	94.45%
(same shots	(58 shots)	(58 shots)
in 2017campaign)		

METHODS

- Feature selection
 - Selection criterion : indicate the occurrences of L-H transition and ELM phase
- Selected two features to detect L-H transition and ELM in KSTAR [6-8] \checkmark The first feature D_{α} : special phenomenon that D_{α} signal is dropped when the transition occurs (poloidal D_{α} monitor #2 [9]) ✓ The second feature $\overline{n_e}$: rising gradient of $\overline{n_e}$ (line averaged electron density) signal (Millimeter Wave Interferometer (MMWI) [10] and Far-Infrared Interferometer (FIR)[11]) Data preparation > The number of samples for training : 65 shots for training set / 58 shots for test set in 2017 KSTAR campaign down-sampled signals to **1KHz** for D_{α} and $\overline{n_e}$; 1 shot = 3000 data samples (3s) \succ rescaling : divided by 1/10 for D_{α} and $\overline{n_{e}}$ Data labeling (supervised learning) : ✓ Label 1 : L-mode, Label 2 : Intermediate, Label 3 : H-mode, and Label 4 : ELM Long Short-Term Memory (LSTM) [5] > A novel kind of Recurrent Neural Network(RNN) to solve vanishing gradient problem \succ LSTM has key concepts which are cell state and three gates (forget, input, and output gates) Cell state is a memory cell that store information > Forget gate can determine whether or not to reflect the previous information into the cell > Information at current time(or sequence) comes through input gate

• In the 2018 KSTAR campaign, **434 shots** of the total 542 H-mode shots are successfully **classified**(**80.07%**)using D_{α} and post processed $\overline{n_e}$. **448 shots** of the total 533 shots are also successfully **classified**(**84.05%**) using D_{α} and real-time $\overline{n_e}$.

• This success rate includes the first ELM burst classification at least.

- Although classifier has never been trained to include ELM after L-H transition in the training step of the LSTM classifier, a result that is classified as ELM are shown after the L-H transition.
- The dithering phenomenon is sometimes associated with ELMs, so that data classified as ELMs during the occurrence of intermediate state can be evidence of dithering. This case shows a good agreement with the description of the dithering phenomenon.

> Output gate generates new output(=hidden) state

- Network layer setting
 - Sequence input layer (input) => single LSTM layer (optimizer = ADAM [12]) => Fully connected layer
 - => softmax layer => classification layer (output)

REFERENCES

[1] H. ZOHM, Plasma Phys. Control. Fusion. 38, 1213-1223 (1996)
[2] R.A. PITTS, et al., J. Nucl. Mater. 438, S48-S56 (2013)
[3] H.Y. LEE, et al., Phys. Plasmas 22, 122512 (2015)
[4] G.W. SHIN, et al., Fusion. Eng. Des. 129, 341-344 (2018)
[5] HOCHREITER SEPP and JÜRGEN SCHUMIDHUBER, Neural. Comput. 9,8, 1735-1780(1997)

[6] F. WAGNER, Plasma Phys. Control. Fusion 49, B1-B33 (2007)
[7] J.W. CONNOR and H.R. WILSON, Plasma Phys. Control. Fusion 42, R1-R74 (2000)

[8] S.W. YOON, *et al.*, Nucl. Fusion **51**, 113009 (2011)
[9] S.H. SON, *et al.*, Korea Nuclear Society Spring Meeting (2013)
[10] Y.U. NAM, *et al.*, Rev. Sci. Instrum. **79**, 10E705 (2008)
[11] M.S. CHEON, *et al.*, Rev. Sci. Instrum. **75**, 3402 (2004)
[12] DIEDERIK P. KINGMA and JIMMY BA, CoRR, abs/1412.6980 (2014)
[13] VLADIMIR N. VAPNIK, Wiley, New York, ISBN 0-471-03003-1 (1998)