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• It	has	been	widely	accepted	that	a	high	confinement	mode(H-mode)	
operation	is	necessary for	advanced	tokamaks	or	ITER.	However,	when	
plasma	is	in	H-mode,	the	edge	localized	mode(ELM)	occurs	at	the	plasma	
edge,	which	release	particles	and	energy	[1].	In	case	of	ITER,	a	full	
tungsten	divertor cannot	tolerate	the	heat	load	from	the	type-I	ELM	[2].	
Besides,	in	terms	of	plasma	density	feedback	control,	the	fuel	into	the	
plasma	cannot	be	absorbed	by	gas	puffing	only	due	to	the	edge	
transport	barrier	and	the	diagnostic	values	of	the	real-time	plasma	
density	are	abnormally	observed	by	the	ELM	burst.
• In	order	to	help	to	control	these	problems, we	need	an	algorithm	that	
can	detect	what	the	plasma	mode	is	and	make	appropriate	actuators	
activate,	such	as	gas	puff,	Supersonic	Molecular	Beam	Injection	(SMBI)	[3],	
and	so	on,	according	to	the	detected	plasma	mode.
• From	our	previous	study	[4]	on	detection	of	the	L-H	transition	in	KSTAR,	
we	showed	the	possibility	of	real-time	detection	with	a	SVM	classifier	
trained	through	machine	learning.
• To	overcome	the	previous	results	and	to	apply	more	suitable	real-time	
algorithm	in	KSTAR practically,	we	trained	neural	networks	based	on	long	
short-term	memory	(LSTM)	[5].

MOTIVATION
• In	the	previous	study	[4]	using	Support	Vector	Machine(SVM)	[13],	we	
obtained	results	about	calculation	time	and	accuracy	for	testset as	follows.		

• In	the	2018	KSTAR	campaign,	434	shots	of	the	total	542	H-mode	shots	are	
successfully	classified(80.07%)using	𝐷"	and	post	processed		𝑛%.	448	shots	
of	the	total	533	shots	are	also	successfully	classified(84.05%)	using	
𝐷"	and	real-time		𝑛%.
• This	success	rate	includes	the	first	ELM	burst	classification	at	least.

• Although	classifier	has	never	been	trained	to	include	ELM	after	L-H	
transition	in	the	training	step	of	the	LSTM	classifier,	a	result	that	is	
classified	as	ELM	are	shown	after	the	L-H	transition.
• The	dithering	phenomenon	is	sometimes	associated	with	ELMs,	so	that	
data	classified	as	ELMs	during	the	occurrence	of	intermediate	state	can	be	
evidence	of	dithering.	This	case	shows	a	good	agreement	with	the	
description	of	the	dithering	phenomenon.

RESULT

• Feature	selection
Ø Selection	criterion	:	indicate	the	occurrences	of	L-H	transition	and	ELM	
phase

Ø Selected	two	features	to	detect	L-H	transition	and	ELM	in	KSTAR	[6-8]
ü The	first	feature	𝑫𝜶 :	special	phenomenon	that	𝐷" signal	is	

dropped	when	the	transition	occurs	(poloidal 𝐷" monitor #2 [9])
ü The	second	feature	𝒏𝒆 :	rising	gradient	of		𝑛% (line	averaged	

electron	density) signal	(Millimeter Wave Interferometer (MMWI) 
[10] and Far-Infrared Interferometer (FIR)[11])

• Data	preparation
Ø The	number	of	samples	for	training	:	65	shots	for	training	set	/	58	

shots	for	test	set	in	2017	KSTAR	campaign
ü down-sampled	signals	to	1KHz for	𝐷" and	𝑛% ;	1	shot	=	3000	data	

samples	(3s)
Ø rescaling	:	divided	by	1/10	for	𝐷" and	𝑛%
Ø Data	labeling	(supervised	learning)	:	
ü Label	1	:	L-mode,	Label	2 :	Intermediate,	Label	3 :	H-mode,	and	

Label	4 :	ELM
• Long	Short-Term	Memory	(LSTM)	[5]
Ø A	novel	kind	of	Recurrent	Neural	Network(RNN)	to	solve	vanishing	
gradient	problem

Ø LSTM	has	key	concepts	which	are	cell	state	and	three	gates	(forget,	
input,	and	output	gates)
ü Cell	state	is	a	memory	cell	that	store	information
Ø Forget	gate	can	determine	whether	or	not	to	reflect	the	previous	
information	into	the	cell

Ø Information	at	current	time(or	sequence)	comes	through	input	gate
Ø Output	gate	generates	new	output(=hidden)	state

• Network	layer	setting
ü Sequence	input	layer	(input)	=>	single	LSTM	layer	(optimizer	=	ADAM	

[12])	=>	Fully	connected	layer
=>	softmax layer	=>	classification	layer	(output)

METHODS
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𝒎𝒂𝒙(𝑺𝒐𝒇𝒕𝒎𝒂𝒙	𝑳𝒂𝒚𝒆𝒓)
=> Label 1 ~ 4; output

① Forget gate
𝒇𝒕 = 	𝝈 𝑾𝒇𝑿𝒕 + 𝑹𝒇𝒉𝒕D𝟏 + 𝒃𝒇

② Input gate
𝒊𝒕 = 	𝝈 𝑾𝒊𝑿𝒕 + 𝑹𝒊𝒉𝒕D𝟏 + 𝒃𝒊

③ Cell candidate
𝒈𝒕 = 𝒕𝒂𝒏𝒉 𝑾𝒈𝑿𝒕 + 𝑹𝒈𝒉𝒕D𝟏 + 𝒃𝒈

④ Output gate
𝒐𝒕 = 	𝝈 𝑾𝒐𝑿𝒕 + 𝑹𝒐𝒉𝒕D𝟏 + 𝒃𝒐

⑤ Cell state
𝒄𝒕 = 	𝒇𝒕𝑪𝒕D𝟏 + 𝒊𝒕𝒈𝒕

⑥ Output(hidden) state 
𝒉𝒕 = 𝒐𝒕𝒕𝒂𝒏𝒉(𝒄𝒕)

Network	layer	setting


