

Use of virtual actuators in ASDEX Upgrade control

O. Kudlacek¹, W. Treutterer¹, F. Janky¹, B. Sieglin¹, F. Felici², I. Gomez-Ortiz¹, A. Gräter¹, T. Maceina¹, M. Maraschek¹, T. Zehetbauer¹, The ASDEX-Upgrade Team³, The MST1 Team⁴

¹ Max Planck Institute of Plasma Physics, Garching, Germany
²Swiss Plasma Centre, EPFL, Lausanne, Switzerland
³ see A. Kallenbach et al, Nuclear Fusion 57 2017 102015²
⁴see H. Meyer et al, Nuclear Fusion 57 2017 102015

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Bigger picture: envisioned discharge control system

Virtual actuator: concept

- To achieve some control tasks (such as β control), one needs more power than available in one actuator
- Historically, we used just one actuator per task

• Virtual actuator: Combine several actuators sorted by priority for one control goal

• One actuator can be just in one virtual actuator to keep the structure clear

Virtual actuator in AUG operation

- Implemented for all 8 ECRH gyrotrons
- Gyrotrons supplied from the pulse schedule sorted by priority
 - Virtual actuator check availability and if needed also power deposition
 - Power distributed to available gyrotrons pointing to the right location
- Example: β_p control by ECRH
 - Keep discharge in I-mode
 - Virtual actuator with 3 gyrotrons

What can you see in the poster P1-10?

- More details about the virtual actuator concept
- More AUG applications
 - β control by ECRH
 - T_e profile control
 - Keep T_e profile in case of:
 - Density or impurity content change
 - NBI source change from radial to tangential
 - Disruption avoidance [see B. Sieglin et al, Rapid prototyping of advanced control schemes in ASDEX Upgrade, Tuesday 11:20]
 - Keep plasma away from disruptive zone