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Introduction

Deep Learning Anomaly Detection

» Tokamaks will have disruptions. Disruption will do harm »0One time series anomaly diction technigue:
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»Physics based disruption prediction is not very reliable. from the expected value —— |
»Machine learning (ML) based disruption prediction needs than an anomaly if found Regression based Anomaly Detection
disruptive shots and Is a black box thus can not
extrapolates to other devices » Time series Deep learning prediction model
>Euture_ large tokamaks will not be able tg provide e Data set Shot
disruption samples to develop a ML based predictor. “signal _ Number
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»Applicable Use Cases: : = o JWVD S
>Very unbalanced training dataset — Disruptions are . oy - A
far less then non-disruptive shots EE; z* M Mo
> Positive samples are rare and expensive — 5 532 M |
Disruptions are harm and must be avoid for large 5% L W i honparspinaagntng | SET NN Myt
tokamaks Timels Time/s
» Characteristics of the positive sample are unknown —
Physics of disruption is not clear Threshold=2.3
»Thus good fit for disruption prediction True Positive; 0.63
fos False Positive: 0.18
.. : 02 Average Warnin 36 ms
Preliminary experiment on J-TEXT oo wr e oe w1 Time - :
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Summary and Future work

detection (SPAD) »sSummary:
developed by JET »Possible to build a ML disruption predictor without any disruptions for training
> Adopted, modified »An anomaly detection and neural network based predictor is developed and
tested using J-TEXT data, But, the performance of the predictor is not as good

A | |
SR &
osipy alelinde 0 4y RPN AT TIPIIIPN yr AT ,",:; J{‘. 1 "‘l{“'“w
VS s L e N R e X -
72 o3 o os as 07 and tested usin
Time/s

as supervised ML disruption predictor.

J-TEXT signal _ .
»But there Is room for improvement.
»Using rule based feature extraction: Haar wavelet »>Future Work:
»Result: High success rate (TPR), but very low warming »More work on signal selection, development on the disruption database and get
time (Twarn), and very high false alarm rate (FPR cleaner data, hyper-parameter search and Adaptive training strategies.
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