Disruption Predictor Based on Neural Network and Anomaly Detection

Wei Zheng, Qiqi Wu, Ming Zhang, and J-TEXT team zhengwei@hust.edu.cn

International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, Huazhong University of Science and Technology

Introduction

>Tokamaks will have disruptions. Disruption will do harm to large tokamaks.

>Inevitable disruptions should be mitigated by disruption mitigation system (DMS). Disruption prediction will be in charge of triggering the DMS.

Deep Learning Anomaly Detection

 \succ One time series anomaly diction technique:

➤Using a regression model to predict the future value of some given signal, ➢it the actual signal deviate

>Physics based disruption prediction is not very reliable. >Machine learning (ML) based disruption prediction needs disruptive shots and is a black box thus can not extrapolates to other devices

Future large tokamaks will not be able to provide disruption samples to develop a ML based predictor.

Anomaly detection

>Anomaly detection is the identification of rare events which raise suspicions by differing significantly from the majority of the data.

from the expected value than an anomaly if found

> Time series Deep learning prediction model

> Applicable Use Cases:

- >Very unbalanced training dataset Disruptions are far less then non-disruptive shots
- ➢ Positive samples are rare and expensive —
- Disruptions are harm and must be avoid for large tokamaks
- ➤Characteristics of the positive sample are unknown Physics of disruption is not clear
- ➤Thus good fit for disruption prediction

Preliminary experiment on J-TEXT

➢ Based on Single predictor signal based on anomaly detection (SPAD) developed by JET >Adopted, modified and tested using J-TEXT signal

Summary and Future work

≻Summary:

>Using rule based feature extraction: Haar wavelet Result: High success rate (TPR), but very low warming time (Twarn), and very high false alarm rate (FPR)

 \geq Possible to build a ML disruption predictor without any disruptions for training

 \succ An anomaly detection and neural network based predictor is developed and tested using J-TEXT data, But, the performance of the predictor is not as good as supervised ML disruption predictor.

 \succ But there is room for improvement.

≻Future Work:

 \succ More work on signal selection, development on the disruption database and get cleaner data, hyper-parameter search and Adaptive training strategies.

Contact Us: zhengwei@hust.edu.cn, wuqiqi@hust.edu.cn

Address: School of Electrical and Electronic Engineering, Luoyu Rd. #1032, Huazhong University of Science and Technology, Wuhan 430074, China

