

IAEA TM CODAC 2019

Research of ELM real-time Recognition based on Deep Learning

F. Xia, Y. Huang, Z.Y. Yang, W.L. Zhong Southwestern Institute of Physics

Daejeon, Republic of Korea 2019.5

Prerequisite Declaration

ELM need to be controlled in RT ELM must be observed first in RT We use Deep Learning Technology to Recognize ELM in RT

China National Nuclear Corporation

•We use H α signal as the basis for ELM Recognition

- Uniform resampling to 10 kHz;
- Data Sample Window is 30ms;
- Window Step is 1ms;
- > Normalize the data in each Data Sample Window.

Data Set in HL-2A

- Shot Range: 20000~25200 , from 2012~2014 HL-2A Campaign
- Total Data Sample Window: 241,900
- Every Data Sample Window is tagged
- Data Sample Ratio for Training : Validation : Test is 8:1:1

22 Layers NN structure

Based on the AlexNet network (CNN), after more than 70 network structure adjustments, we used a 22-layer neural network for ELM Recognition finally

The network training results for Data Sample Window Set

Data Set	Recognition Success Rate		
Training set	99.4%		
Validation set	98.8%		
Test set	99.3%		

ELM Assert Policy for One Shot

Window Size:30ms Step Size: 1ms Group Size:20

- Start Signal Assert:
- More than 16 ELM Signals in one group, Start Signal is asserted
- Stop to find Start Signal, Transfer to find ELM End Signal
- ◆ End Signal Assert:
- Start Signal is asserted
- Less than 10 ELM Signals in one group, End Signal is asserted.
- Stop to find End Signal, Transfer to find another ELM Start Signal

All data from the HL-2A from 2009 when the first H-mode occurred are tested:

Campaign	Shots	False R	FPR	Miss R	FNR
2018	(31983, 35915)	7/190	3. 69%	0/183	0%
2017	(29893, 31982)	3/147	2.04%	1/145	0. 69%
2016	(28052, 29892)	2/180	1.11%	0/178	0%
2015	(26579, 28051)	2/229	0.87%	0/227	0%
2014	(23074, 26578)	3/92	3. 26%	0/89	0%
2013	(21326, 23073)	6/216	2. 78%	0/210	0%
2012	(18219, 21325)	2/224	0.89%	2/224	0.89%
2011	(15118, 18218)	7/191	3. 66%	1/185	0. 54%
2010	(13434, 15117)	1/55	1.82%	0/54	0%
2009	(10595, 13433)	2/131	1. 53%	0/129	0%
Total	(10595, 35915)	35/1665	2.10%	4/1634	0. 24%

Recognized H-mode: 1665; False recognized: 35; FPR(False positive rate):2.10%.

Actually H-mode: 1634; Miss recognized: 4; FNR(False negative rate):0.24%.

- > The 39 error (35+4) recognition shots is in the L-H transition state.
- > All the recognition error of the start/end times does not exceed 20ms.

speed test platform:

- Based on Linux, C
- Real-time control data processing order
- Use a total of 14900 time slices

Time Consumption for one slice:

- Minimum : 0.37 ms
- Maximum : 0.75 ms
- Average : 0.46 ms

Recognition time of ELM

The Control Cycle of HL-2A PCS is 1ms.

- It is proved that the model can be used in HL-2A RT Control
- ♦ We will put it into practice for HL-2A campaign in 2020

Thank you!

ENNE China National Nuclear Corporation