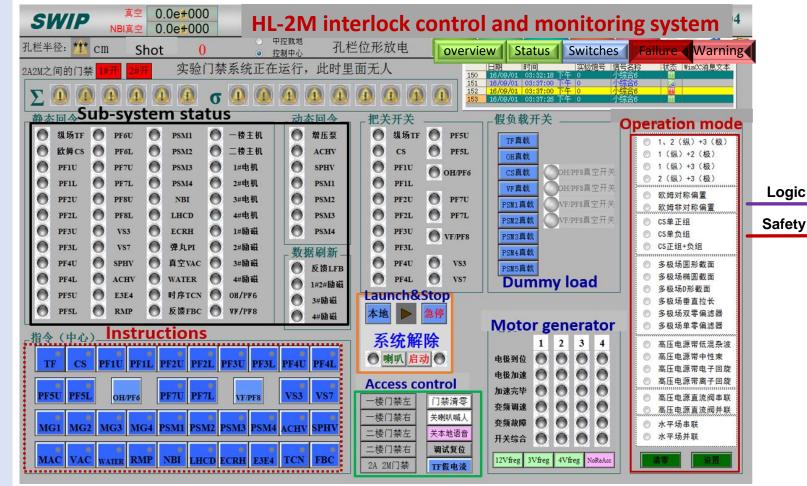
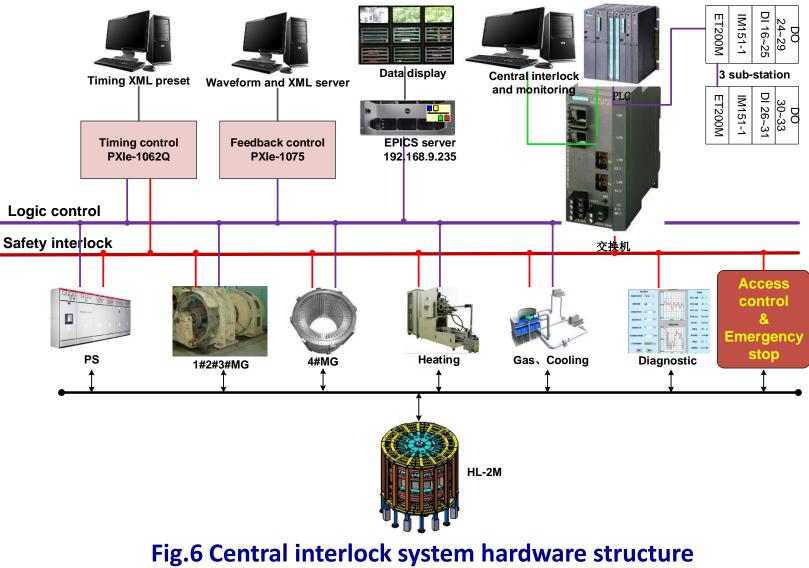
Preparations for the control of HL-2M first plasma campaign

B Li, X.M Song, J Zhou, J Sun, L.L Ren Southwestern Institute of Physics (SWIP) lib106@swip.ac.cn

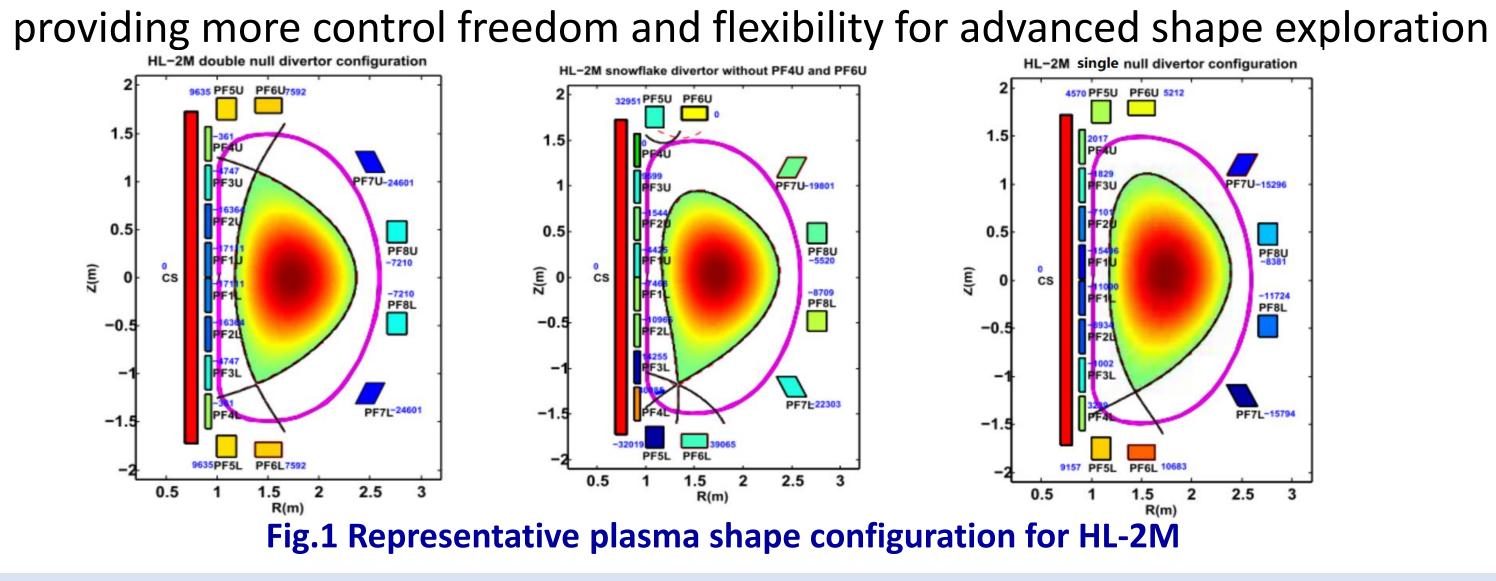

ABSTRACT


- HL-2M main components assembly will be accomplished in the end of 2019 and first plasma campaign is expected in 2020.
- The developed PCS consists of plasma discharge scheduling platform, feedback control system, timing control system and central interlock system. A brief introduction of PCS is included.
- In order to minimize the risks and difficulties of first plasma control, only small parts of PF coils are used in first plasma campaign.
- Two scenarios are designed by using a MATLAB-based tool, recently developed in SWIP. Obmic initial magnetization and VDE are not expected.

Central interlock system

System monitoring interface, detection and response to off-normal events have been implemented in the newly developed central interlock system (CIS)

based on WinCC and PLC.


developed in SWIP. Ohmic initial magnetization and VDE are not expected.

BACKGROUND

•HL-2M is a medium-size copper tokamak under construction in China as a modification to HL-2A, with Ip=3MA, R=1.78m, a=0.65m, Bt=2.2T and k \approx 2.

装置/参数 Major radius	HL-2A 1.65m	HL-2M 1.78m	C	oils	R(m)	Z(m)	W(m)	H(m)	θ	Ncoil	I _{max} (kA)
Minor radius	0.4m	0.65m		CS	0.748	0.0	0.144	3.560	0	96	110
Aspect ratio	4.1	2.8	P	PF1	0.912	0.185	0.068	0.401	0	28	14.5
Flux swing	2.5Vs	>14 Vs	P	PF2	0.912	0.586	0.068	0.401	0	28	14.5
Plasma current	0.45MA	2.5MA (3 MA)	P	PF3	0.912	0.987	0.068	0.401	0	28	14.5
Toroidal field	2.8T	2.2 T (3.0T)	P	PF4	0.912	1.388	0.068	0.401	0	28	14.5
Triangularity	<0.5 (DN)	>0.5	P	PF5	1.092	1.753	0.201	0.238	0	28	38
Elongation	<1.3 (DN)	2	P	PF6	1.501	1.790	0.275	0.164	0	27	38
Heating	>10MW	>25MW	Р	PF7	2.500	1.200	0.320	0.238	64	28	42
Null	SN	Flexible	P	PF8	2.760	0.480	0.201	0.238	0	28	38
			-								

•16 up-down symmetric PF coils and one CS coil are powered separately,

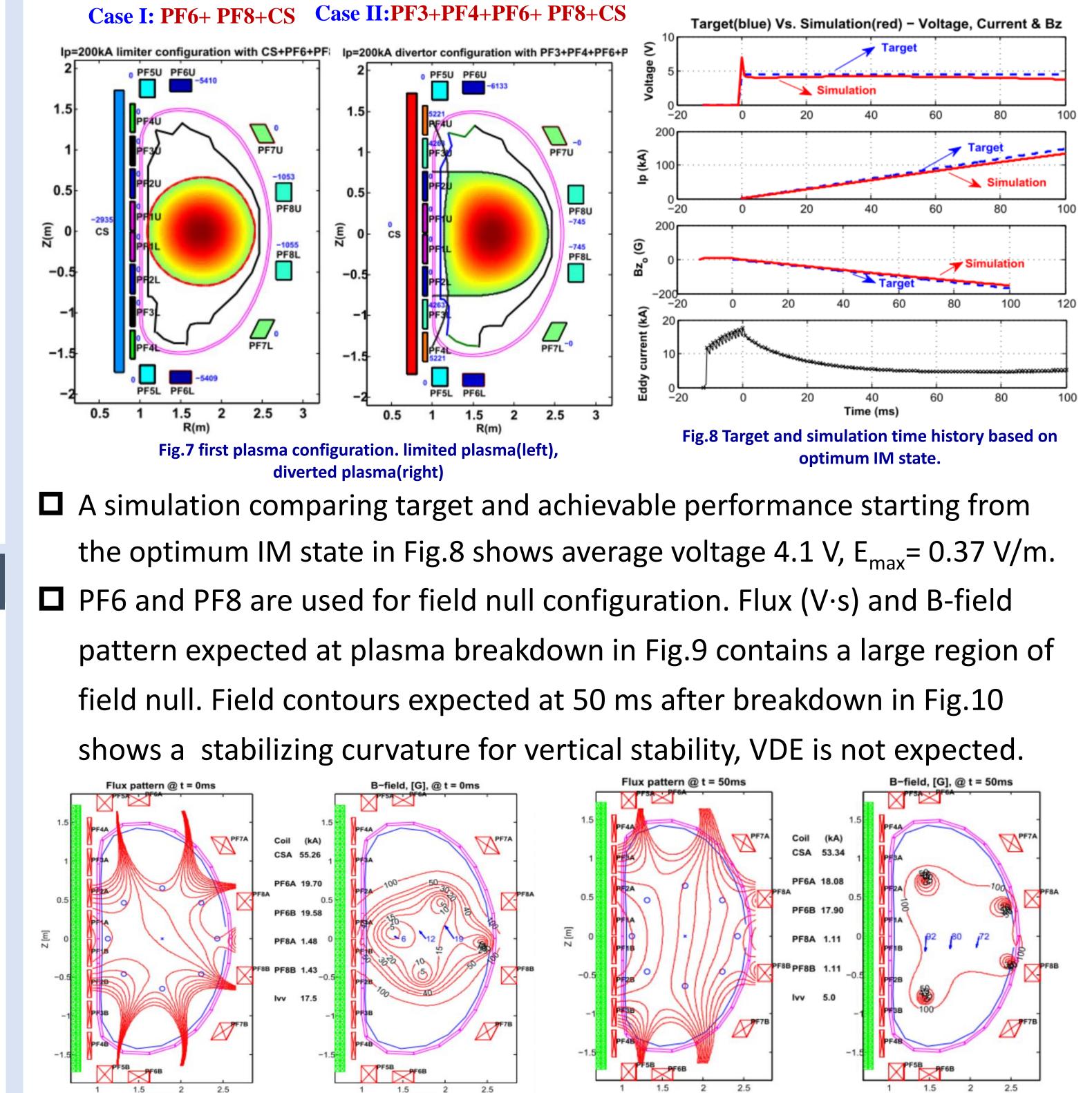


Fig.5 Monitoring interface with Siemens WINCC

First plasma startup scenario development

- For the sake of simplicity and safety, only small parts of PF coils are used in first plasma campaign.
- Image on the one limiter configuration (Case I) and one divertor configuration (Case II) with Bt=1.4T, Ip= 200kA, k≈1 are designed in Fig.7.

Development of plasma control system

The framework of PCS is consisted of **discharge scheduling platform**, **feedback control system**, **timing control system** and **central interlock system**.

The discharge scheduling platform incorporates a Web server based on eXtensible Markup Language (XML) for the preset of discharge parameters and contains a waveform server based on MATLAB.

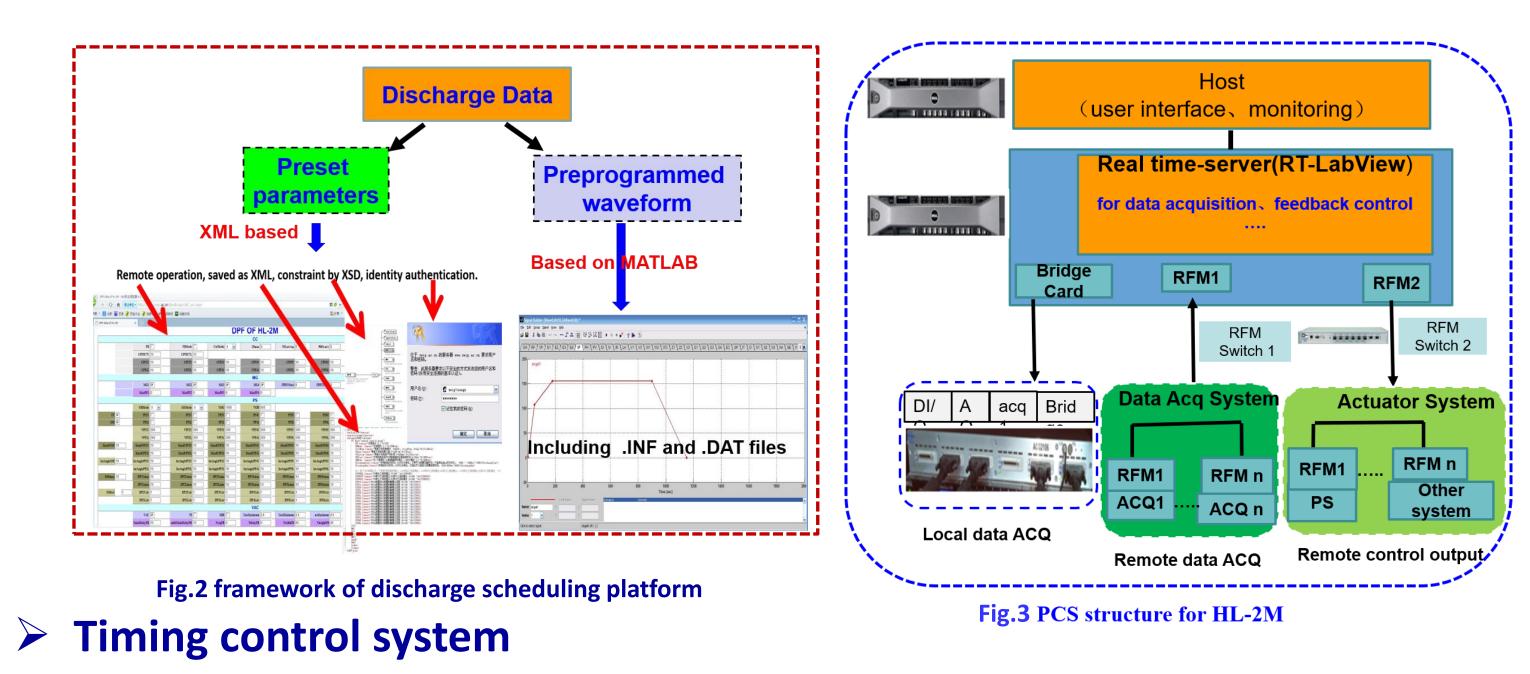


Fig.9 simulated breakdown flux and B-field contours at plasma breakdown, 6~12 G field is shown along midplane

50 probes signals are linearly combined to

Fig.10 simulated vacuum field contours at t=50ms after breakdown. It contains the correct field curvature needed for vertical stability

PCS

- generates the trigger according to the desired sequential defined in XML
- 96 output channels of 5V TTL trigger, 16 input channels of trigger condition

				1	T	1							
		signalID		signalName		initialValue	true 🔻						
atta	chedInformation				-				EPICS message				
		division	•	personInCharge		toPosition]	Host				
		History	2004	insituPosition		comment	no]					
t	riggerConditions	isSigmaInverse	false 🔻	orSignals	1▼(备注: orSignals组数)				(LabView)				
	orSignals1	and	Signals1 <mark>Ⅰ▼</mark> (备注: orSig	nals1中ansSignals(的个数)								
		1_isInverse	false 🔻	2_isInverse	false 🔻	3_isInverse	false 🔻						
		1_andSignalName		2_andSignalName		3_andSignalName]					
		1_delayTime	0	2_delayTime	0	3_delayTime	0]					
	orSignals2 andSignals2 (备注: orSignals2中ansSignals的个数)								Trigor input FPGA Digital I/O				
		1_isInverse	false 🔻	2_isInverse	false 🔻	3_isInverse	false 🔻		condition (logic process) Refresh (96 channels)				
		1_andSignalName		2_andSignalName		3_andSignalName]	every 20us				
		1_delayTime	0	2_delayTime	0	3_delayTime	0]	RT-LabView				
	pulseClass 1 ▼ (备注: pulseClass的个数)												
		1_repeatNumber	1	2_repeatNumber	1	3_repeatNumber	1	4_repeatNumber 1	10MHz TTL PXI-6509				
		1_timingMode	absolute v	2_timingMode	absolute v	3_timingMode	absolute •	4_timingMode abso	ute square wave triggers				
		1_startTime	0	2_startTime	0	3_startTime	0	4_startTime 0	Signal distributor				
		1_lowWidth	0	2_lowWidth	0	3_lowWidth	0	4_lowWidth	Signal distributor				
		1_highWidth	1000	2_highWidth	1000	3_highWidth	1000	4_highWidth 1000					

Fig.4 framework of timing control system

form estimates of Rp, Zp by multiplication Ip,R,Z

the coefficients in the rows of E-matrix.

- □ Ip is from the Rogowski measurement.
- ts PID M_matrix Voltage HL-2M <u>E_matrix</u> Magnetic Ip,Rp,Zp Estimator Diagnostics

The M-matrix is determined by calculating Fig.11 Schematic of PCS circular plasma control algorithm

current or voltage distributions required to produce appropriate fields.

Summary

- PCS for HL-2M has been developed and control test is on the way.
- First plasma startup scenario development with minimum PF coils and simulation based on optimum IM state has been performed.
- Significant progress has been made for first plasma startup and control.
 PID controllers tuning and engineering test for coil voltage and current

control are the main work in the near future.