Introduction of ITER CODAC relevant Technologies on JET and MAST

•

60

60

25

60

65

60

60

(1)

18:53

6

6

6

5

. 65

John Waterhouse, UKAEA-CCFE

12th IAEA TM on Control, Data Acquisition and Remote Participation , Daejeon, 13-17 May 2019

Contents

EPICS on MAST

- Environment Monitoring
- Central Information Display
- Development being considered

EPICS Training

EPICS on JET

- CODAS integration
- Filter wheel controller
- Radiation Protection Instrumentation
- Turbomolecular pump controllers
- Other possible developments

Extension of JET real-time Network

- CODAS integration and performance testing
- JET architecture for ITER CODAC
 SDN
- Other possible developments

XX

UK Atomic Energy Authority

Introduction

Long history, and stable, reliable JET CODAS infrastructure Independent development on both JET and MAST Some significant gaps with slow controls and monitoring on MAST Strong desire for common approach on JET and MAST Strong desire to gain experience with ITER CODAS technologies We can only justify new developments if we don't already have a working and maintainable solution that can be repeated (step and repeat) However, we have been able to introduce EPICS based systems on JET and MAST Extended JET real time networks using ITER CODAC SDN.

XX

EPICS Training at Culham

UK Atomic Energy Authority

Active member of the local EPICS community

• Attend and host EPICS meetings

In-house EPICS training course based on the Cosylab and Tessella material

EPICS training course Self-study modules

EPICS and EPICS modules

• CSS

Hands on training

- LEDs driven from a RaspberryPi
- Motor controller (clock)
- Camera

MAST Cubicle Environment Monitoring

- No standard slow monitoring and control infrastructure
 - no EPICS
- Simple proof of principle application
 - Cubicle environment monitoring
- Standard cots snmp environment monitor
 - PAPOUCH TME temperature sensor
 - TERACOM TCW 122B-CM
 - also provide contact for door monitoring
- EPICS IOC already available
- CSS HMI (BOY)
- Logging (BEAUTY)
- Alarms (BEAST)
- Python script to regenerate EPICS database and BOY when sensors are added

2 Rile Edit Search CSS Window	CS-Studio (on epics-dev1)	×
13 EB ER ES 46 9		
17 EX III III III III III III	G	
🕈 Archive 31 👒 Naviga 🗂 🗆	20 D1_OFMacro2.opi 20 D1_OF_013Macro2.opi 20 Temp_trends_TCW_M 10 Temp_trends_TCW_M 10 **Not saved to file>	🔛 *=Not saved to file= 10 🦛 🗆
URL: [dbc:mysql:@epics 2] [mfo]	<u>응처치 패비는 직원수직직적적</u> 한 위관 행수… \$2052a	
Name Descri and Austral Patterns [28:7emp2] Search		
Add. Peplace Peg.Exp. No		
PV Name Ne MD24_TCW1228 Temp2 rdl	g 2:set 1 2114:0730 13:40 13:0.050 13:40 13:0.050 13:40 13:0.050 13:40 13:000 13:20 13:000 13:20 13:000 13:20 13:000 13:20 13:000 13:20 13:000 14:20 Teme m02:2100:mmg2	14:40 2014-07-30 15:10:45
	Properties M Export Samples # Inspect Samples @ Console	- 0
	Samples to Export	
	Start Time: -1 hours 0.0 seconds	
	End Time: now	Use start/end time of Plot
	Source: O Plot @ Raw Archived Data O Optimized Archived Data 10000 O Linear Interp. 00:30:00	
	romat	
	spreadsheet ○ Matlab	
	2 Tabular R with error columns R with Severity/Status	
	Default format Decimal notation Exponential notation digits	
	Output	
	Filename: <erter file="" name=""> Browse</erter>	Export
SI 10		
		neetr
0*		

J. Waterhouse et al. Introduction of ITER CODAS relevant Technologies on JET and MAST

 File Edit Search Run CSS Window Help

 Et Edit Sear

UK Atomic Energy Authority

1. MAST Central Information Display

- EPICS IOC implementing iFIX OPC connection to the control system OPC server (Windows/PC)
- HMI implemented within Tomcat WebOPI (Windows/PC)
 - Web output proxied through MAST firewall giving read only access

An enabling development that opens up two possibilities

- Replacement of some or all of the iFIX systems with EPICS/CSS
- EPICS managed data acquisition systems

2019-05-02	11:13:42				
State Area	a is open				
Shot Number 40,012	Time in State				
Next Shot Expected	Vacuum Temperature 24.908424 DegC				
Vacuum TG1 990.831970 mbar	Vacuum TG2 0.000000 mbar				
Bakeout State Stopped	Bakeout Hour 0.000 hour				

UK Atomic Energy Authority

Conceptual data acquisition design for fusion facilities at Culham using EPICS

established. Its use for data-acquisition is less well developed. However, with the introduction of modules such as Area Detector (to capture video data) and the advent of structured data-types for process variables, EPICS becomes more functional in this regard.

The fusion experiments at the CCFE have a requirement to perform shotbased data-acquisition. The figure presents one possible high-level design for how this might be achieved using EPICS.

Other MAST Developments

UK Atomic Energy Authority

Data acquisition for spectroscopic CCD cameras

MAST has 8 models of camera from 4 camera manufacturers

EPICS areaDetector extension being considered

Image taken from KS5 on JET

JET EPICS Integration

JET CODAS has an extensive, integrated, well established slow control and monitoring infrastructure

 Point (150000), alarms (12000), trends (7000), logic and sequences, mimic (3000), control panels, role based security, read only access over the online firewall

So why change?

- Developed in isolation like many systems at the time
- Developed a very long time ago for Norsk Data systems and ported to Oracle Solaris
- Difficult to migrate to new hardware/operating systems
- Becoming increasing difficult to support

Introduce EPICS

- And build a bridge
- Access to a vast body of well supported (open source) software
- Cross platform support (Windows and Linux)
- ITER compatible
- Introduce some compatibility with MAST
- Contribute back to the community

EPICS Channel Access over network standalone HMI OMS plug-in daemon Mimic caacq Server ca-bridge Hardware IOC CFW **Diagnostic Host** HMI Daemon jcaput Expsedit page Touch Panel Settings Component Utility program ch ValueToEpics

One of my software/control engineers said "its great, I have integrated this device into CODAS without writing a single line of code"

XX

UK Atomic Energy Authority

UK Atomic Energy Authority

JET Spectroscopy Filter Wheel Control

Thorlabs FW102C filter wheel

- high-precision, motor-driven, six-position filter wheel
- its text-based command line interface (CLI) protocol

EPICS IOC streamDevice support module.

General purpose controller, suitable for managing an FW102C filter wheel in a variety of applications Full integration with JET CODAS

Deployed to

- JET KT3 Diverter Spectroscopy system
- JET KLDT_E5WD physics camera (currently in development)

Cha								us	KT3 Stat
		DIAG-ST				sential ree off	NOT O NOT E GAP-T		■ Reason ■ AH/YC Beam times
KT3x:FW:IC	i i	ISOLATIC							
KT3x:FW:II				ON		ON	ON	ON ON	CAMERA STATUS
				0		0	0	0 0	PIXELS OFF
m KT3x:FW:PC	0								PIXELS ON
X I MMO DEL DO	×								NUMBER OF TRACKS
D KISX. FW. PC	Φ								START TIME (s)
; ! ·	0.1								STOP TIME (s)
	0C								EXPOSURE TIME (ms)
	H H	KTERTE							TEMPERATURE (C)
<	MA	Bad	🗖 15 & cl						SPECTROMETER STATUS
		402010	4320.0						
sti	- I i	0.0					0.0		WAVELENGTH ACTUAL
1		1200-0							GRATING (REQ)
<u></u>		0.0							GRATING (ACTUAL)
									SLIT WIDTH(REQ)
	- 1 i								SLIT WIDTH (ACTUAL)
a	\ i						CAMERA	CAMERACAMERA	FLIP MIRROR (ACTUAL)
1									FILTER WHEEL (REO)
			stor .	rogram St	P				FILTER WHEEL C
		operational	rogram is C	KT3CAM P	-				
		mail							
			40	ce 10:22	no ain	2 abane	Dad. 2	Objects, 90	Mon 08 Apr 10:23

Access Control

file

FW102C.acf

CA

Process

Variables

(PVs)

IFT Level 2

CA Client

daemon

Database

file

FW102C.db

FW102C

IOC

Protocol

file

FW102C.proto

CII

FW102C

Filter Whee

COM

Port

JET Turbomolecular Pump Control

PLC control to interlock with valves and gauges etc Specific pump controller for detail monitoring and specialist controls.

Oerlikon LeyboldTurbo specific EPICS IOC

- Engineering data
 - Pump rotation speed,
 - Converter temperature
 - Motor current
 - Pump temperature
 - Circuit voltage
 - Error status
- On/off and reset controls
- USS (Universal Serial Specification Interface Protocol) communication protocol and the EPICS application has been developed using the EPICS asynDriver module. Implemented on Windows
- Integration with JET CODAS

Agilent - Tritium compatible

- 2300 main turbomolecular pumps
- Engineering data
- Controls (only reset made accessible to the operators)
- 550 diagnostic turbomolecular pumps
- · Engineering data
- No controls

Serial interface using the EPICS streamDevice. AsynDriver module handles the serial port. Implemented on Windows Integration with JET CODAS

Edwards STP-A2203 Series Turbomolecular Pump/SCU-1600 Control Unit.

EPICS IOC controls

- Engineering data
 - pump rotation speed
 - motor current
 - motor temperature
- Controls
 - Set the rotation speed
 - On/off
- Serial interface using the EPICS streamDevice. AsynDriver module handles the serial port. Developed on Linux and then built and deployed to Windows
- Integration with JET CODAS

XX

UK Atomic Energy Authority

JET Radiation Protection Instrumentation

Premium Analyse Tritium Monitors

- EPICS Modbus/TCP-IP device
- Periodic polling
- Full integration with JET CODAS
- Trends recoded in JET CODAS
- Hosted on a virtual Linux server

2 currently deployed but this is due to expand to 13 Full integration with JET CODAS

Index SUBSTAT DIAG-ST	n Stack Mon [.]	itors: MRF				
TRS12/MR	F TRS13/MDF					
	EPICS	PSI				
eas Vol Act	-74218.52	-73423.38				
re Alarm	5000000.00	5000000.00				
larm	8000000.00	8000000.00				
lowrate	60032.93	57147.02				
ourly Activity	-267440272.00	-251856384.00				
olling Hourly Activity	0.00	0.00				
olling Day Activity	114193751605248.00	114193751605248.00				
colling Month Activity	3359367189495808.00	3359367189495808.00				
SB	0x0					
SB	0x7d0					
onnection Status	CONNECTED	CONNECTED				
larm State	NO ALARM	NO ALARM				

N.

UK Atomic Energy Authority

UK Atomic Energy Authority

JET Real Time Network Extension using ITER CODAC SDN nic and switch performance tests Using same test techniques as for an

- Real-time control & Real-time protection
- Current system based on ATM technology
 - VXWorks/PowerPC, Windows/PC, Linux/PC
 - ATM cards difficult to source & some only work in one direction
- Technology refresh & more computational power
- ITER CODAC Ethernet/SDN
- Intel Pro1000 nics and Gigabit edge with 10 Gigabit interconnects using Extreme switches

nic and switch performance tests Using same test techniques as for an ITER/F4E real time network qualification contract – udp multicast transmitter and receiver nic – nic nic – nic nic – switch – nic nic – switch – nic With and without an aggressor injecting additional high network traffic

Typical performance not seen with the ITER technology

13

JET architecture for ITER CODAC SDN

- JET real-time network/ATM ITER CODAC Ethernet/SDN bridge
- MARTe application
- Initially unidirectional
 - Real-time Flux surface reconstruction and real-time display based on Mantid
- Extended to bidirectional
 - Loopback through the existing real time signal server
- Currently extending across 2 switches
 - Real time High Resolution Thomson scattering (HRTS) reconstruction (KE11), a MARTe V2 application
 - Real time ECE Michelson interferometer (KK1)
- Future plans
 - Enhanced real time controller
 - Move local actuator managers onto Ethernet/SDN
 - Release spares for real-time protection system

No.

UK Atomic Energy Authority

Future Developments and Possibilities

EPICS managed data acquisition
EPICS areaDetector extension for spectroscopy cameras
EPICS interface for Granville-Phillips Ion Trap Vacuum mass spectrometer Development complete but not yet deployed Of interest to ITER via the US DA
EPICS archiver
EPICS CSS based HMI's
ITER CODAC DAN – load test in a large real word application
ITER Real Time framework for JET RTCC2/PCS

XX

UK Atomic Energy Authority

Conclusions

We have started to introduce EPICS on both JET and MAST

On MAST

We have implemented a proof of principle application to monitor cubicles Implemented a Central information Display that opens up the way for EPICS managed data acquisition systems

On JET

We have built a bidirectional bridge between JET CODAS and EPICS Implemented spectroscopy filter wheel controller Implemented several turbomolecular pump controllers Implemented interface to Radiation Protection Instrumentation

Thereby providing some commonality between JET and MAST by utilising technologies to be used in ITER CODAC

We are looking forward to the possibility of developing EPICS managed data acquisition systems, possibly camera based spectroscopy

On JET we have extended the ATM based real-time network using the ITER CODAC SDN technology over Ethernet. Development of a real time boundary reconstruction display with an SDN data feed

Developing real-time data reconstruction for High Resolution Thomson Scattering diagnostic (KE11) and ECE Michelson Interferometer diagnostic (KK1) that stream data onto the SDN extension to the real-time network

Looking forward to developing a new SDN based real-time control system, based on ITER real time framework for JET post 2020

We would also like to be able to develop an ITER CODAC like fast controller that uses EPICS, SDN and DAN

J. Waterhouse et al. Introduction of ITER CODAS relevant Technologies on JET and MAST

Acknowledgement

Adam Stephen and Nicoletta Petrella, The JET CODAS Group The MAST DATAC Group CCFE, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK.

EPICS training materials based on those from: Tessella Itd, 26 The Quadrant, Abingdon Science Park, Abingdon OX14 3YS, UK; Cosylab, d. d., Control System Laboratory, Gerbičeva ulica 64, SI-1000 Ljubljana, Slovenia.

The views and opinions expressed do not necessarily reflect those of UKAEA and Fusion for Energy which are not liable for any use that may be made of the information contained herein.

This work was funded jointly by the RCUK Energy Programme and by Fusion for Energy. To obtain further information underlying this paper, whose release may be subject to commercial restrictions, please contact PublicationsManager@ccfe.ac.uk.

J. Waterhouse et al. Introduction of ITER CODAS relevant Technologies on JET and MAST

N. **Introduction of ITER CODAC relevant UK** Atomic Energy Authority **Technologies on JET and MAST** Thank you **EPICS**

J. Waterhouse et al. Introduction of ITER CODAS relevant Technologies on JET and MAST

18