

Automatic recognition of anomalous patterns in discharges by recurrent neural networks

Gonzalo Farias¹ <u>Ernesto Fabregas²</u> Sebastián Dormido-Canto² Jesús Vega³ Sebastián Vergara¹

May 13-17 2019 / Daejeon, KOREA

GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA Y COMPETITIVIDAD

DAD Energéticas, Medioambientales y Tecnológicas

- □ Introduction
- Background
 - □ Anomaly Detection
- Proposed Solution
 - □ Recurrent Neural Networks (LSTM)

Results

Summary

Introduction

□ The experiments generate huge quantities of data. It is estimated that only 10% of this data is analyzed.

A shot of few seconds can generate huge quantity of data:

- **TJ-II** device has +1000 channels of measurements.
- A shot in **JET** can take around 10 seconds (**10 GB/shot**. around 100 TB/year).
- **ITER** could generate **1 TB/shot**. around 1 PB/year.

- □ Introduction
- **Background**
 - Anomalies
- Proposed Solution
 - □ Recurrent Neural Networks (LSTM)
 - Anomaly Detection
- **Results**
- **Summary**

Background

□ The idea is to use Artificial Intelligence to deal with fusion data.

□ Create systems that allow specialists to analyze and interpret data more quickly and efficiently than manually.

GOBIERNO

DE ESPAÑIA

- **Background Anomalies**
- Anomaly: Something that deviates from what is standard, normal, or expected.
- □ One type of anomaly is known as 'outlier', which is a value located outside of the normal class.
- □ Other type of anomaly is an anomalous behavior, which is a **periodic collapsing phenomenon in time series**.

- □ Introduction
- Background
 - Anomalies
- **Proposed Solution**
 - □ Recurrent Neural Networks (LSTM)
 - □ Anomaly Detection
- **Results**
- **Summary**

Proposed Solution – LSTM

DUED

Ciemat

Centro de Investigacione

Energéticas, Medioambie

GOBIERNO DE ESPAÑA MINISTERIO

DE ECONOMÍA Y COMPETITIVIDAD

ontrol, Data Acqu

□ Recurrent Neural Network – Long Short Term Memory (LSTM)

PONTIFICIA UNIVERSIDAE

DE VALPARAISO

CATOLICA

* https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Forget gate layer $f_t = \sigma \left(W_f[h_{t-1}, x_t] + b_f \right)$

Input gate layer

 $i_{t} = \sigma \left(\boldsymbol{W}_{i} \left[\boldsymbol{h}_{t-1}, \boldsymbol{x}_{t} \right] + \boldsymbol{b}_{i} \right)$ $\widetilde{C}_{t} = tanh \left(\boldsymbol{W}_{c} \left[\boldsymbol{h}_{t-1}, \boldsymbol{x}_{t} \right] + \boldsymbol{b}_{c} \right)$ $C_{t} = f_{t} * C_{t-1} + i_{t} * \widetilde{C}_{t}$

Output gate layer

$$o_{t} = \sigma \left(\boldsymbol{W}_{\boldsymbol{o}} \left[h_{t-1}, x_{t} \right] + \boldsymbol{b}_{\boldsymbol{o}} \right)$$
$$h_{t} = o_{t}^{*} tanh \left(C_{t} \right)$$

LSTM – Forecasting (training stage)

PONTIFICIA UNIVERSIDAE

DE VALPARAISO

CATOLICA

Ciemat

Centro de Investigacione

Energéticas, Medioambientale

v Tecnológicas

DUED

GOBIERNO DE ESPAÑA MINISTERIO

DE ECONOMÍA Y COMPETITIVIDAD

Training Progress (07-May-2019 11:57:40) Results

Validation RMSE: N/A Training finished: Reached final iteration Training Time Start time: 07-May-2019 11:57:40 Elapsed time: 6 sec RMSE Training (smoothed) Training Validation Loss Training (smoothed) Training Validation

Forget gate layer

$$f_t = \sigma \left(\boldsymbol{W_f}[h_{t-1}, x_t] + \boldsymbol{b_f} \right)$$

AEA Technical

Control, Data Acqu

Remote Partici

Input gate layer

 $i_{t} = \sigma \left(\mathbf{W}_{i} \left[h_{t-1}, x_{t} \right] + \mathbf{b}_{i} \right)$ $\tilde{C}_{t} = tanh \left(\mathbf{W}_{c} \left[h_{t-1}, x_{t} \right] + \mathbf{b}_{c} \right)$ $C_{t} = f_{t} * C_{t-1} + i_{t} * \tilde{C}_{t}$

Output gate layer $o_t = \sigma \left(\mathbf{W_o} \left[h_{t-1}, x_t \right] + \mathbf{b_o} \right)$ $h_t = o_t^* \tanh(C_t)$

*It adjusts the bias and weights to learn the shape of the waveform

Goals

General Goal

Anomaly detection using Recurrent Neural Network (LSTM - Long Short Term Memory).

Specific Goal

□ The LSTM Neural Network learns the waveform to detect anomalies through forecasting.

Anomaly Detection – Threshold (th=k*std) How the Anomaly is detected? We fix a threshold proportional to the Standard Deviation of the Error.

PONTIFICIA UNIVERSIDAD

DE VALPARAISO

CATOLICA

LAEA Technical

Control, Data Acqui

Remote Particip

Ciemat

Centro de Investigaciones

Energéticas, Medioambientale

y Tecnológicas

DUED

GOBIERNO DE ESPAÑA MINISTERIO

DE ECONOMÍA Y COMPETITIVIDAD

2th LAEA Technical Mee n Control, Data Acquisis nd Remote Participation

Fusion Researc

0.2

th LAEA Technical Ma n Control, Data Acquir nd Remote Participatio

Anomaly Detection – Simultaneous (Δt)

Anomaly Detection – Simultaneous (Δt)

- □ Introduction
- Background
 - Anomalies
- Proposed Solution
 - □ Recurrent Neural Networks (LSTM)
 - □ Anomaly Detection
- **Results**
- **Summary**

Results Simultaneous Anomalies Detection in a Shot (t)

The wider is the band the less anomalies are detected

	K (th = K*STD)									
An _t	1	2	3	4	5	6	7	8		
1	190	109	67	40	21	11	8	6		
2	96	34	8	3	2	0	0	0		
3	49	11	4	0	0	0	0	0		
4	21	(1)	0	0	0	0	0	0		
5	4	0	0	0	0	0	0	0		
6	1	0	0	0	0	0	0	0		
7	0	0	0	0	0	0	0	0		
8	0	0	0	0	0	0	0	0		
9	0	0	0	0	0	0	0	0		

1 simultaneous anomaly in 4 signals for k=2 at given time (t)

h LAEA Technical M Control, Data Acqui d Remote Participatio

*100 shots randomly selected

The more simultaneity is required, the anomalies are detected less

Results

The more simultaneity is required,

are detected.

anomalies

the less

Simultaneous Anomalies Detection in Time Windows ($\Delta t=5$)

The wider is the band the less anomalies are detected

	K (th = K*STD)										
$An_{\Delta t}$	1	2	3	4	5	6	7	8			
1	266	204	153	110	62	33	30	25			
2	212	98	50	35	21	5	3	0			
3	146	54	25	3	2	0	0	0			
4	92	35	8	0	0	0	0	0			
5	64	5	0	0	0	0	0	0			
6	30	3	0	0	0	0	0	0			
7	15	0	0	0	0	0	0	0			
8	4	0	0	0	0	0	0	0			
9	0	0	0	0	0	0	0	0			

4 simultaneous anomalies in 8 signals for k=1 with $\Delta t=5$

LAEA Technical

Control, Data Acqu

Remote Partici

*100 shots randomly selected

Summary

- LSTM networks can learn the shape of a waveform (one model for signal).
- LSTM networks can be used for anomaly detection in signals.
- □ The specialists have to define the parameters to distinguish the noise from the real anomalies.
- □ It is possible to design supervised systems that allow the detection of previous detected/studied anomalies.
- □ In the paper ID. 484 you can find other anomaly detection methods.

Automatic recognition of anomalous patterns in discharges by recurrent neural networks

Gonzalo Farias¹ Ernesto Fabregas² Sebastián Dormido-Canto² Jesús Vega³ Sebastián Vergara¹

May 13-17 2019 / Daejeon, KOREA

GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA Y COMPETITIVIDAD

Centro de Investigaciones IDAD Energéticas, Medioambientales y Tecnológicas