

Progress in the Design of the Interlock System for MITICA

A. Luchetta^a, N. Pomaro^a, C. Taliercio^a, M. Moressa^a, L. Svensson^b, F. Paolucci^c, C. Labate^c

a) Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy

O/5-5

- b) ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex, France
- c) Fusion for Energy, c/ Josep Pla, nº 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona, Spain

adriano.luchetta@igi.cnr.it

ACKNOWLEDGMENT

The work leading to this presentation has been funded partially by Fusion for Energy under work programs WP2017/18/19. This publication reflects the views only of the authors, and Fusion for Energy and ITER Organization cannot be held responsible for any use, which may be made of the information contained therein. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Outline

ITER Neutral Beam Test Facility **Overview of MITICA requirements** Overview of MITICA plant systems Beam source and line **Power supply** MITICA I&C – Architectural Constraints MITICA Interlock **Functional Constraints Methodology Constraints Technological Constraints** Fast track to MITICA Power Supply Integration Conclusions

ITER Neutral Beam Test Facility (NBTF)

R&D to develop the ITER Heating Neutral Beam Injector (HNB)

Established in Padova - Italy at the Consorzio RFX site

Two experiments

□SPIDER – ITER full-size ion source

In operation since June 2018

□ MITICA – ITER HNB full-size prototype

iter

Operation expected by 2023

CONSORZIO RFX

erca Formazione Innovazione

Fig. 2. NBTF buildings.

Fig. 3. NBTF building CAD overview.

Overview of MITICA Requirements

Table 1. MITICA requirements

Requirement	Value	Unit
Ion species (negative)	H- D-	
Acceleration voltage	1000	kV
Ion beam current (H- D-)	45 50	А
Beam power	16.5	MW
Beam-on time	3600	S
Beamlet divergence	≤7	mrad
Co-extracted electron fraction e-/H- e-/D-	< 0.5 1	

MITICA requirements were never met together in existing neutral beam injectors.

Fig. 4. CAD view of the ITER HNB.

Overview of MITICA Plant Systems (beam source and line)

- Fig. 7. Residual Ion Dump
- Fig. 8. Neutralizer

Overview of MITICA Plant Systems (power supply)

MITICA I&C Architectural Constraints

- **Data Archiving Network Heating Neutral Beam**
- Ion Source Power Supply ISEPS

- PON **Plant Operation Network**
- RIDPS **Residual Ion Dump Power Supply**
- **Synchronous Databus Network** SDN
- **Time Communication Network**
- TPU **Thermal Protection Unit**
- VPU Vacuum Protection Unit

MITICA HNB Interlock – Functional Constraints - Fast Interlock

Power supply protection
10 µs reaction time from fault detection to actuator commands
Fiber-optics digital I/0 (about 40xI / 20xO)
Pulse trains signals (safe, no signals on level)
Breakdown management (next slide)

Fast Acquisition Unit

Fast Logic Solver

Optical Interface Unit

Fig. 18. Fast interlock prototype based on Compact RIO

MITICA Interlock – Functionality Constraints – Breakdown (BD) Management

Flashover between grids or between grids and vessel
 Routine event due to grid high potential and short distances
 No real faults, but to be managed timely (<10 µs) to avoid damage

Occurrence rate to be monitored and beam to be shut down in case of exceeding of a predefined threshold (<10 BD event/s)</p>

BD management is implemented in the MITICA HNB Interlock

Breakdown

between grids

Notch before beam

reapplication

Notch

RF power

beam start up

before

MITICA Interlock – Methodology Constraints - FMECA

The Failure Mode, Effects, and Criticality Analysis (FMECA) method was considered. It is well codified and widely adopted in industry, electrical and nuclear plants.

FMECA is a bottom-up analysis:

- □ System is divided into functional blocks
- □ Failures are elementary functions lacking or out of specification
- **□** Each failure is recognized and evaluated for relevance
- □ Actions to reduce/eliminate failures in design and production phases are proposed
- A first FMECA analysis was developed in 2007 in the framework of the preliminary design of the NBTF facility. Another FMEA analysis was carried out for SPIDER in 2010.
- MITICA FMECA revised in 2017
- The present work proceeds from those analyses, adapting them to MITICA and taking advantage of the information gained and design advancements since then.

MITICA Interlock – Methodology Constraints - FMECA

ITER Risk Classification Severity and Frequency

	Category	Description	Indicative frequency level (per year)
	Frequent	Events which are very likely to occur in the facility during its lifetime	> 1
cy	Probable	$10^{-1} - 1$	
Frequency	Occasional	Events which are possible and expected to occur in the facility during its lifetime	$10^{-2} - 10^{-1}$
Fr	Remote	Events which are possible but not expected to occur in the facility during its lifetime	$10^{-3} - 10^{-2}$
	Improbable	Events which are unlikely to occur in the facility during its lifetime	$10^{-4} - 10^{-3}$
	Negligible	Events which are extremely unlikely to occur in the facility during its lifetime	< 10 ⁻⁴

	Category	Injury to people	EURO Loss (Damage to equipment, decontamination)	Downtime (For the process)
nce	Catastrophic	Scales depend on the type of injury	$> 5 * 10^7$	> 6 months
Consequence	Major		$10^6 - 5 * 10^7$	4 weeks to 6 months
Con	Severe		$10^5 - 10^6$	3 days to 4 week
	Minor		$0 - 10^5$	< 3 days

12th IAEA on Control, Data Acquisition, and Remote Participation for Fusion Research 13-17 May 2019, Daejeon, Republic of Korea

ITER Risk Classification – Classes

	Risk Class	Interpretation
ses	I	Intolerable risk
k Classes	II	Undesirable risk and tolerable only if risk reduction is impracticable or if the costs are grossly disproportionate to the improvement gained
Risk	III	Tolerable risk if the cost of risk reduction would exceed the improvement gained
	IV	Negligible risk

		F x C	Catastrophic	Major	Severe	Minor
Risk Classification		Frequent	Ι	Ι	Ι	III
	uency	Probable	Ι	Ι	II	III
	duei	Occasional	Ι	II	III	III
	Freq	Remote	II	III	III	IV
		Improbable	III	III	IV	IV
		Negligible / Not Credible	III	IV	IV	IV

12th IAEA on Control, Data Acquisition, and Remote Participation for Fusion Research 13-17 May 2019, Daejeon, Republic of Korea

MITICA Most Outstanding Failure Modes

	Item / Function	Potential Failure Mode	Potential Effect(s) of Failure	Severity	Potential Cause(s)/ Mechanism(s) of Failure	Occurrence	Current Machinery Controls Prevention	Current Machinery Controls Detection	Detection	R P N	Recommended Action(s)	ITER RISK Class
N =	Electrical and Mechanical Interface			10	external water leakage from primary circuit	2	Margin in design	Flow measurements, Coolant pressure Measurement	7	140	Margin in design, Safety system detectors	п
≍ rit∨			10	external coolant leakage from cryogenic circuit	2	Margin in design	Flow measurements, Coolant pressure Measurement	7	140	Margin in design, Safety system detectors	п	
rity nber			Absent or incorrect power supply; loss of signals; loss of electrical insulation	7	Short in HV bushing	5	Margin in design and tests	Electric measurements, diagnostics	7	245	Fail safe design of electrical measurements	п
	Assuring vacuum tightness	Water Leakage inside vessel	pressure out of range; presence of water vapour; increased probability of breakdown; freezing of coolant inside components;	8	Water leakage from accelerator grids	5	Leakage tests with cryopump OFF	Pressure measurements, RGA	8	320	Margin in design, redundancy and high speed on Pressure Measurements	I
			neezing of coolant inside components,	8	Water leakage from beam line components	5	Leakage tests with cryopump OFF	Pressure measurements, RGA	8	320	Margin in design, redundancy and high speed on Pressure Measurements	I
		Gas (N2 H2 D2 He) leakage inside vessel	pressure out of range; increased probability of breakdown; Presence of flammable and toxic gas outside vessel;	7	Air Leakage from vessel flanges or windows	5	Leakage tests with cryopump OFF	Pressure measurements, RGA	7	245	Fail safe design, redundancy an high speed on Pressure Measurements, real time RGA measurements	п
	Producing negative ions	Non uniform distribution	Beam out specification; overload/damage on subsequent components due to electrons	7	malfunction of magnetic PG filter	5		electrical measurements	7	245	periodical check of magnets	п
	Extraction of negative ions			8	Short-circuit between EG and PG	5	Overvoltage protections, Breakdown Detector	ISEPS voltage measurements	6	240	Margin in design	I
	Acceleration and focussing of negative ions	Incorrect acceleration/focusing	Beam out of specification; perveance mismatch; damage to subsequent components	7	Deformation or misalignment on grids	5		GG temperature measurements, Beam Spectroscopy	7	245	periodic inspection	п
	Providing protection against grid breakdown	Loss of protection capability	Increased damage of acceleration grids; decrease of vacuum insulation capabilities	7	Short in grounded grid dumpers	5	Margin in design and tests	Fast Electric measurements	7	245	Fail safe design and Redundancy on Fast Electric Measurements	п

RPN = Risk Priority Number

MITICA Interlock – Methodology Constraints Safety Instrumented Functions - SIL (IEC61508) Allocation

Protection Instrumented Function: Shut down of power supply AGPS and ISEPS

IP Category	Minimum ITER Interlock Integrity Level	Equivalent SIL	I&C Implementation	SIL – Safety Integrity
Catastrophic Category 1	3IL-4	SIL-3	High integrity interlock with diversity (e.g. PLC + hardwired I&C)	level (IEC 61508)
Major Category 2	3IL-3	SIL-3	High integrity interlock	, 3IL - ITER
Severe Category 3	3IL-2	SIL-2	Low integrity interlock	Interlock
Minor Category 4	3IL-1 (no interlock)	SIL-1	Conventional Control (no interlock)	Integrity Level

Protection Instrumented functions definition and 3IL allocation still ongoing
 The main difficulty is the lack of certified hardware, in particular sensors for fault detection, which in many cases were custom developed for the NBTF.

MITICA Interlock – Technological Constraints –

Slow Interlock – Standard Industrial Solution

Component selection postponed – technology evolving

Standard Siemens technology

Ready-off-the-shelf solutions exist up to SIL3 – included in ITER PCDH

□Siemens S7-400FH – Fail safe, high availability (redundant)

Tools for safety programming: F Systems programming, Safety matrix Tool, Continuous Function Chart (CFC) blocks – certified IEC 61508

Profibus ET200M – PROFIsafe

□S7-400FH and Profibus: ageing components

Updated Siemens technology – SIL3 – Included in ITER PCDH

□Siemens S7-1516F (F or H available, FH near future?)

□ Profinet (ET200SP, F-DI – F-DQ, very good distributed I/O, simplified cabling, limited size, but high power consumption) – PROFIsafe

□ Restricted tools for safety programming - Safety Advanced

WinCC-OA SCADA

□NEWS - WinCC-OA equipped with PROFIsafe profile (certificate Jan. 2019) □NEWS - SIL3 (WinCC-OA Certificate re-emitted, March. 2019)

MITICA Interlock – Technological Constraints – Fast Interlock

Ready-off-the-shelf solutions exist – ITER PCDH

Very useful optical I/O modules (IRS) – no ITER catalog
 10 or 20 Mbit/s, 3xin/3xOUT or 2xIN/2xOUT channels

FPGA on board
 LabView FPGA programming
 No control on executable

HDL integration possible

Fig. 21. IRS optical IO module

12th IAEA on Control, Data Acquisition, and Remote Participation for Fusion Research 13-17 May 2019, Daejeon, Republic of Korea

MITICA Interlock – Technological Constraints SPIDER Interlock as MITICA HNB Prototype

SPIDER inauguration in June 2018

Fig. 22. SPIDER Interlock.

MITICA Interlock – Short-term Solution for Power Supply Integration

MITICA operation planned for 2023

- MITICA Power Supply Integration planned for Q2 2020
- No Time and manpower to develop complete, sound solution
 - **NBTF** safety system under construction in parallel
 - **SPIDER Operation in parallel**
 - **MITICA CODAS development in parallel**
- No advantage to anticipate final solution
 - □Start of MITICA Operation expected in 2023

Solution: Clone of SPIDER Central Interlock (fast and slow)

- Same hardware (S7-1516F, profinet ET200SP, WinCC-OA, CompactRIO)
 Minimal software/firmware modifications (state vs pulse train signals)
 Affordable cost (~100 MEuro)
- **Reasonable compromise**

Summary

Design of MITICA Interlock is progressing in parallel with the procurement of MITICA main components

High level I&C architecture has been defined

- Fault analysis has been carried out
- Protection functions and SIL allocation still ongoing

HW Component selection is postponed to take advantage of technology evolution

Temporary solution to manage MITICA power supply integration have been identified

Clone of SPIDER Central Interlock

Thank you very much

