ID: 499 **Development of a new CODAS for the TCABR Tokamak** W.P. de Sá¹, G.P. Canal¹, J.J.F.G. Ramirez³, J.H.F. Severo¹, I.C. Nascimento¹, R.M.O. Galvão^{1,4}, A.O. Santos², W. Komatsu³, F. Kassab³, J.G. Ferreira⁴, M.C.R. de Andrade⁴, and J.R.C. Piqueira³ ¹Institute of Physics of the University of São Paulo, São Paulo, Brazil

²Mauá Institute of Technology, São Caetano do Sul, Brazil

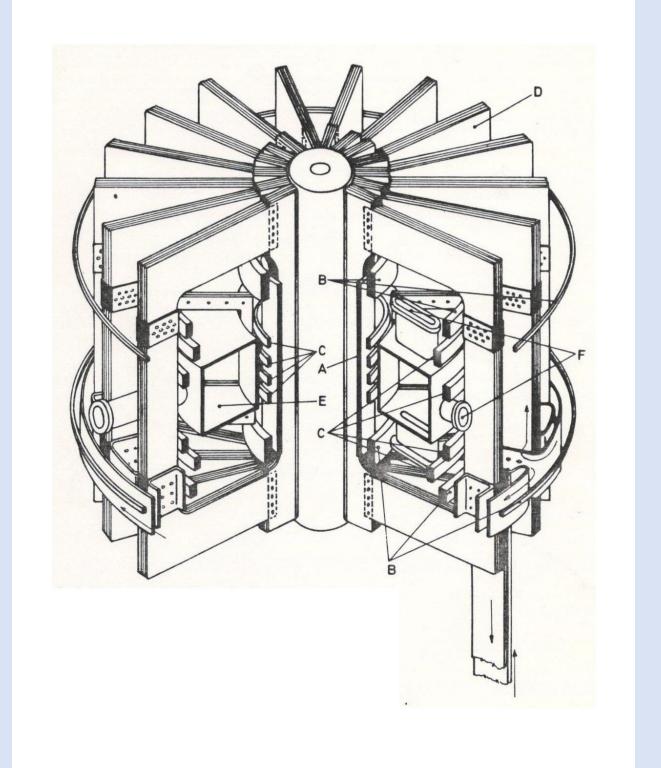
³Polytechnic School of the University of São Paulo, São Paulo, Brazil

⁴Nacional Institute for Space Research, São José dos Campos, Brazil

pires@if.usp.br

ABSTRACT	TCABR Upgrade – Needs and Challengers
 An upgrade is being conducted on the TCABR tokamak, which is a small-size tokamak (R0 = 0.62 m and a = 0.2 m) operated at the University of São Paulo, Brazil. This upgrade consists mainly in the installation of graphite tiles to cover entirely the inner surface of the vacuum vessel wall new poloidal field (PF) coils to allow for the generation of various 	 WHY THE UPGRADE The proposed upgrade of the TCABR tokamak provides for the study of plasmas with more varied forms that are relevant to controlled thermonuclear fusion.

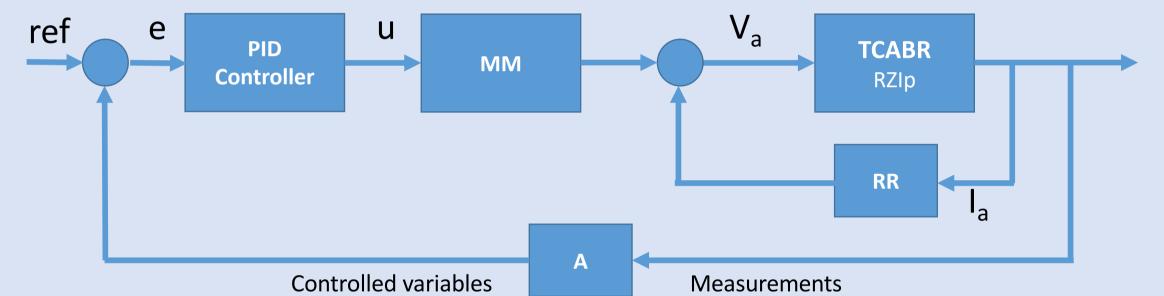
- divertor configurations such as single-null, double-null, snowflake and x-point target divertors,
- in-vessel HFS and LFS non-axisymmetric control coils for ELM III. suppression studies, and
- a coaxial helicity injection system to improve plasma start-up. iv.
- The creation of the various plasma scenarios that are envisaged for TCABR will require a robust and flexible plasma control system.
- The new TCABR plasma shape and position control is being designed and will be based on a feedback PID technique. The design of the new PID controllers will be carried out using the so-called RZIp model


CHALLENGERS

However, plasmas with elongated configuration are vertically unstable.

 \succ The instability has μ s time scale – too fast to control

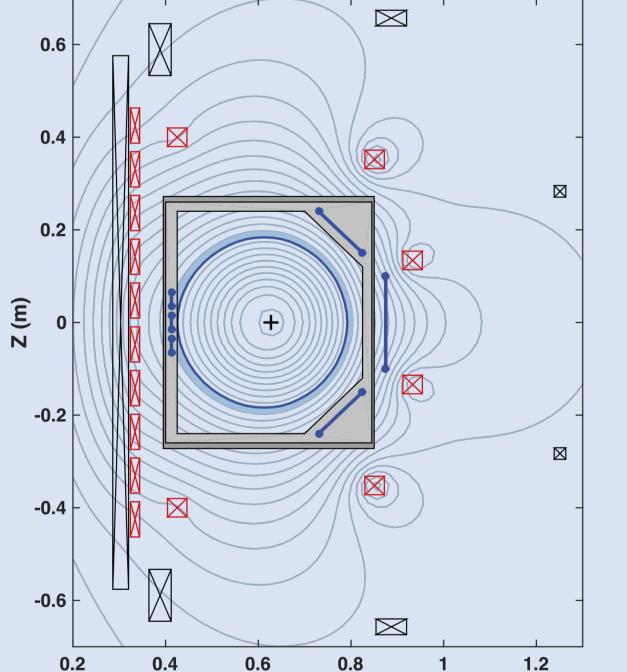
SOLUTIONS

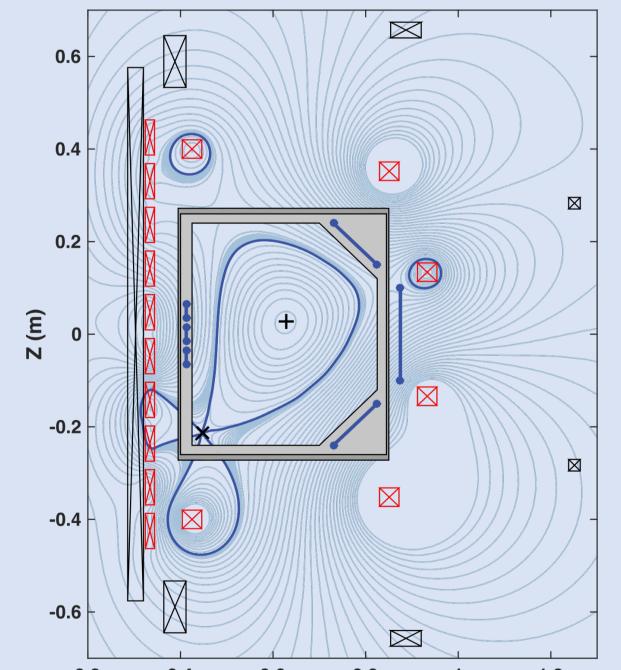

- For such plasma formats to be obtained, it will be necessary to control a set of 17 magnetic coils responsible for plasma control.
- Change vessel continuous torus: induced vessel currents ("eddy currents") creates a counteracting radial field: up-down symmetric vessel current modes are excited.

TCABR Tokamak

- •TCABR is a small-sized tokamak ($R_0 =$ 0.62m and a=0.2m) of maximum $I_P = 120$ kA and $B_0 = 1.5$ T
- •The configuration of magnetic fields allows only plasmas with circular

TCABR Magnetic Control Overview




plasma configuration.

•For position control a sophisticated control system is not required, since stability there in vertical İS displacement.

Present Configurations

Upgrade

TCABR RZIp model

- **RZIp**: The TCABR is going to use the conventional model
 - Circuit equations for active conductors, passive conductor, plasma
 - Force balance for plasma position

• Linearized model

$$\begin{bmatrix} \boldsymbol{M}_{aa} & \boldsymbol{M}_{av} & \boldsymbol{M}_{ap} & \frac{\partial \boldsymbol{M}_{ap}}{\partial R} & \frac{\partial \boldsymbol{M}_{ap}}{\partial Z} \\ \boldsymbol{M}_{va} & \boldsymbol{M}_{vv} & \boldsymbol{M}_{vp} & \frac{\partial \boldsymbol{M}_{vp}}{\partial R} & \frac{\partial \boldsymbol{M}_{vp}}{\partial Z} \\ \boldsymbol{M}_{pa} & \boldsymbol{M}_{pv} & \boldsymbol{L}_{P} & \boldsymbol{M}_{pR} & \boldsymbol{0} \\ \frac{\partial \boldsymbol{M}_{pa}}{\partial R} & \frac{\partial \boldsymbol{M}_{pv}}{\partial R} & \boldsymbol{M}_{Rp} & \boldsymbol{M}_{RR} & \boldsymbol{M}_{RZ} \\ \frac{\partial \boldsymbol{M}_{pa}}{\partial Z} & \frac{\partial \boldsymbol{M}_{pv}}{\partial Z} & \boldsymbol{0} & \boldsymbol{M}_{ZR} & \boldsymbol{M}_{ZZ} \end{bmatrix} \overset{d}{dt} \begin{bmatrix} \boldsymbol{I}_{a} + \delta \boldsymbol{I}_{a} \\ \boldsymbol{I}_{v} + \delta \boldsymbol{I}_{v} \\ \boldsymbol{I}_{P} + \delta \boldsymbol{R} \\ \boldsymbol{I}_{P} + \delta \boldsymbol{R} \\ \boldsymbol{I}_{P} + \delta \boldsymbol{Z} \end{bmatrix} + \begin{bmatrix} \boldsymbol{R}_{a} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{R}_{v} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{R}_{P} & \frac{\partial \boldsymbol{R}_{p}}{\partial R} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_{a} + \delta \boldsymbol{I}_{a} \\ \boldsymbol{I}_{v} + \delta \boldsymbol{I}_{v} \\ \boldsymbol{I}_{P} + \delta \boldsymbol{I}_{P} \\ \boldsymbol{I}_{P} + \delta \boldsymbol{R} \\ \boldsymbol{I}_{P} + \delta \boldsymbol{Z} \end{bmatrix} = \begin{bmatrix} \boldsymbol{V}_{0} + \delta \boldsymbol{V} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}$$

The elements: (a): active coils (v): vessel (p): plasma

- Matrix MM: Mutual inductance matrix between the several elements
- Matrix RR: Resistance

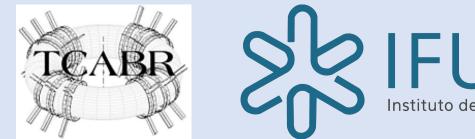
0.2 R (m) 0.2 0.4 0.6 1.2 **R (m)**

TCABR Circular Configuration

TCABR Snowflake Configuration

• Vector I: Current at the several elements

• Vector V: Voltage Induced

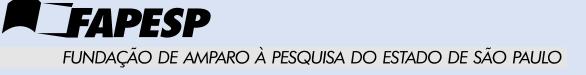


•All the matrix have been build

• The codes for the Poloidal Field coils controller have development.

•Tests using the TCABR circular plasma configurations data is going to be started

ACKNOWLEDGEMENTS



• D.Muller et all, Fusion Engineering and Design, 141 (2019) 9

