
12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

MARTe2 and MDSplus Integration for a
Comprehensive Fast Control and Data

Acquisition System
G.Manduchi1, A. Rigoni1, T.Fredian2, J.Stillerman2,

A. Neto3, F. Sartori3

1) Consorzio RFX, Corso Stati Uniti 4, Padova 35127, Italy

2) Massachusetts Institute of Technology, 175 Albany Street, Cambridge, MA 02139,
United States

3) Fusion for Energy, Barcelona, Spain

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

�In the past two different HW and SW solutions
�Fast computation and low latency for real-time control

�Bulk transfer and high data throughput for data acquisition

�Not anymore valid when streaming data in long lasting experiments
�Current bus and disk technology allow managing high speed data
movement from ADC to disk

�Availability of different cores on computer allows co-existence of real-time
tasks with other system activities

�Same Hardware prescribed in ITER for data acquisition and real-time
control

�The only difference in underlying bus (DAN, SDN)

Data Acquisition and Real-Time control
in long lasting experiments

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

�Separate Frameworks have been traditionally used for real-time
control and data acquisition

�MARTe and MDSplus have already been integrated in the past

�MDSplus used to store data produced by MARTe

�Configuration data and reference waveforms used in MARTe retrieved from

MDSplus pulse files

�Data Plumbing implemented BUT the two systems were mainly
independent

�Two systems to be learnt, maintained and configured in day-per-day operation

Uniformity in Hardware
means

Uniformity in Software?

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

�MARTe2 is a completely re-written version of MARTe developed
under strict quality standards

�MISRA compliance

�Full test units for largest code coverage

�MARTe2 improves MARTe platform abstraction

�From bare-metal microcontrollers to full fledged Linux

�OS abstraction performed at several layers, with or without threads

�MARTe2 introduces a new and more powerful system abstraction

�MARTe Generic Application Modules (GAMs) now enriched with two new

components: DataSources and Brokers

MARTe => MARTe2

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� In the former MARTe GAMs were associated to real-time threads
and exchanged data in shared memory

�I/O carried out by specialized GAMs

� In MARTe2 a GAM can only exchange data with DataSource
components

�Data Sources can implement memory buffers or I/O devices

� A step further: Broker objects manage data exchange between
GAMs and Data Sources

�Broker not exposed in the configuration, but chosen by the Data

MARTe2 Data Sources and Brokers

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� The answer is definitely: NO

� Three logical components each mapping an activity in real-time
control

� GAM => The Algorithm

� DataSource => The management of Data

� Broker => The management of Data Flow

� Data flow can be (among others):

� Plain, i.e. just copy in memory. In this case Data Source implements just the

buffer and the broker the copy

� Synchronized, where the broker triggers some action like ADC sampling, DAC

output.

� Decoupled, to handle non real-time storage of real-time data stream. The

broker will handle buffering and the management of a separate thread

Data Sources and Brokers
A way to complicate one’s life?

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� Carried out by two DataSource implementations: MDSReader and
MDSWriter

� MDSReader will load reference waveforms in memory and will return appropriate

sample whenever the corresponding broker (MemoryMapSynchronizedInputBroker)

is executed

� MDSWriter receives data decoupled from real-time threads thanks to the

associated Data Broker (MemoryMapAsynchOutputBroker)

� Nevertheless the two systems are still mostly independent, and two
different configurations must be provided

� MDSplus experiment model for Data Acquisition configuration

� MARTe2 configuration file for the definition of the real-time components (GAMs,

Data Sources, Threads)

MDSplus Data Plumbing in MARTe2

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� Model the different object instances in the

experiment database

� A Device is the container of set of related

data (e.g. to describe a piece pf HW)

� A subtree in the data hierarchy associated with every

device instance

� Devices are similar to classes and bring a

data structure (a subtree) and a set of methods

� A constructor method will instantiate the

corresponding data set when the experiment

database is built

� A Setup Method will be invoked by the

graphical browser to show the content of the

corresponding instance

� Other methods will carry out device specific

functions (INIT, STORE)

MDSplus Devices

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� MDSplus devices are mapped against python classes

� Developing a new device means developing a new python class that
inherits fro class Device

� All the required interaction with MDSplus is carried out by the
superlass. The new device has to:

� Declare the structure of the underlying subtree by means of a python dictionary

� Implement device specific methods. Associated data items are available as

instance fields

� It is therefore natural to import MARTe2 configuration as a set
of devices

Adding a new device in MDSplus

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� A straight mapping is not the best approach.

�It is possible to provide a high level view of the system, including all
the required information, and then generating on the fly the
corresponding MARTe2 configuration

� The system can be described by the following devices:

� MARTE2_GAM: describing a computation carried out in the system

� MARTE2_IN: describing an input device

� MARTE2_OUT: describing an output device

� Data flow will be specified by input/output node references in the
associated device fields

�Naturally expressed in MDSplus by means of Expressions

� All data handled by the system will be stored in the pulse file,
providing a complete picture of the system behavior.

Mapping MARTe2 components into MDSplus devices

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� Implemented by a (subclass of)
MARTE2_GAM device

�It specifies the Parameters, the Inputs
and the Outputs

� Input fields refer to stored input signals
that are read from the pulse file by means
of the generated Data Source instance

� The generated MARTe2 components
include a MDSWriter instance to store
results in the pulse file

Use case: A simulation program

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� Implemented by a (subclass of)
MARTE2_OUT

�It specifies the Parameters and the
Inputs.

� Input fields refer to stored input signals
that are read from the pulse file by means
of the generated Data Source instance

� The generated MARTe2 components
include a MDSReader instance to read
data from the pulse file, and a specific
DAC DataSource for waveform
generation.

Use case: Waveform generation

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� Implemented by a set of MARTE2_IN,
MARTE2_GAM and MARTE2_OUT
instances

� Input fields of MARTE2_GAM instance
will contain a reference to output fields of
MARTE2_IN

� Input fields of MARTE2_OUT will refer
to output fields of MARTE2_GAM

� The generated MARTe2 components
include two MDSWriter instances to write
data into the pulse file, one DAC
DataSource for waveform generation,
and one ADC DataSource for Data
Acquisition.

Use case: Control Loop

12th IAEA on Control, Data Acq.and Remote

Participation for Fusion Research

� The proposed approach provides a full integration of MARTe2 and
MDSplus

� A subset of the possible MARTe2 configurations can be described in
this way

�However it covers the use cases of interest

� A real world MARTe2 configuration file is composed of many
thousands of lines, and editing it manually is impossible

� Users do not need a detailed MARTe2 knowledge for system
configuration

� Developers can easily wrap MARTe2 DataSources and GAMs into
MDSplus devices by inheriting from the python superclasses
MARTE2_GAM, MARTE2_IN and MARTE2_OUT.

� The final target will be the generation of MARTe2 GAM and
MDSplus MARTE2_GAM device directly from Simulink.

Conclusions

