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�In the past two different HW and SW solutions
�Fast computation and low latency for real-time control

�Bulk transfer and high data throughput for data acquisition

�Not anymore valid when streaming data in long lasting experiments
�Current bus and disk technology allow managing high speed data 
movement from ADC to disk

�Availability of different cores on computer allows co-existence of real-time 
tasks with other system activities

�Same Hardware prescribed in ITER for data acquisition and real-time 
control

�The only difference in underlying bus (DAN, SDN)

Data Acquisition and Real-Time control 
in long lasting experiments
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�Separate Frameworks have been traditionally used for real-time 
control and data acquisition

�MARTe and MDSplus have already been integrated in the past

�MDSplus used to store data produced by MARTe

�Configuration data and reference waveforms used in MARTe retrieved from 

MDSplus pulse files

�Data Plumbing implemented BUT the two systems were mainly 
independent

�Two systems to be learnt, maintained and configured in day-per-day operation

Uniformity in Hardware 
means

Uniformity in Software?
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�MARTe2 is a completely re-written version of MARTe developed 
under strict quality standards

�MISRA compliance

�Full test units for largest code coverage

�MARTe2 improves MARTe platform abstraction

�From bare-metal microcontrollers to full fledged Linux 

�OS abstraction performed at several layers, with or without threads

�MARTe2 introduces a new and more powerful system abstraction

�MARTe Generic Application Modules (GAMs) now enriched with two new 

components: DataSources and Brokers

MARTe => MARTe2
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� In the former MARTe GAMs  were associated to real-time threads 
and exchanged data in shared memory

�I/O carried out by specialized GAMs

� In MARTe2 a GAM can only exchange data with DataSource
components

�Data Sources can implement memory buffers or I/O devices

� A step further: Broker objects manage data exchange between 
GAMs and Data Sources

�Broker not exposed in the configuration, but chosen by the Data

MARTe2 Data Sources and Brokers
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� The answer is definitely: NO

� Three logical components each mapping an activity in real-time 
control

� GAM => The Algorithm

� DataSource => The management of Data

� Broker => The management of Data Flow   

� Data flow can be (among others):

� Plain, i.e. just copy in memory. In this case Data Source implements just the 

buffer and the broker the copy

� Synchronized, where the broker triggers some action like ADC sampling, DAC 

output. 

� Decoupled, to handle non real-time storage of real-time data stream. The 

broker will handle buffering and the management of a separate thread

Data Sources and Brokers
A way to complicate one’s life?
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� Carried out by two DataSource implementations: MDSReader and 
MDSWriter

� MDSReader will load reference waveforms in memory and will return appropriate 

sample whenever the corresponding broker (MemoryMapSynchronizedInputBroker) 

is executed

� MDSWriter receives data decoupled from real-time threads thanks to the 

associated Data Broker (MemoryMapAsynchOutputBroker)

� Nevertheless the two systems are still mostly independent, and two 
different configurations must be provided

� MDSplus experiment model for Data Acquisition configuration

� MARTe2 configuration file for the definition of the real-time components (GAMs, 

Data Sources, Threads)

MDSplus Data Plumbing in MARTe2
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� Model the different object instances in the 

experiment database

� A Device is the container of set of related 

data (e.g. to describe a piece pf HW) 

� A subtree in the data hierarchy associated with every 

device instance

� Devices are similar to classes and bring a 

data structure (a subtree) and a set of methods

� A constructor method will instantiate the 

corresponding data set when the experiment 

database is built

� A Setup Method will be invoked by the 

graphical browser to show the content of the 

corresponding instance 

� Other methods will carry out device specific 

functions (INIT, STORE)  

MDSplus Devices
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� MDSplus devices are  mapped against python classes

� Developing a new device means developing a new python class that 
inherits fro  class Device 

� All the required interaction with MDSplus is carried out by the 
superlass. The new device has to:

� Declare the structure of the underlying subtree by means of a python dictionary

� Implement device specific methods. Associated data items are available as 

instance fields

� It is therefore natural to import MARTe2 configuration as a set 
of devices

Adding a new device in MDSplus
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� A straight mapping is not the best approach.

�It is possible to provide a high level view of the system, including all 
the required information, and then generating on the fly the 
corresponding MARTe2 configuration

� The system can be described by the following devices:

� MARTE2_GAM: describing a computation carried out in the system

� MARTE2_IN: describing an input device

� MARTE2_OUT: describing an output device

� Data flow will be specified by input/output node references in the 
associated device fields

�Naturally expressed in MDSplus by means of Expressions

� All data handled by the system will be stored in the pulse file, 
providing a complete picture of the system behavior.

Mapping MARTe2 components into MDSplus devices
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� Implemented by a (subclass of) 
MARTE2_GAM device

�It specifies the Parameters, the Inputs 
and the Outputs

� Input fields refer to stored input signals 
that are read from the pulse file by means 
of the generated Data Source instance 

� The generated MARTe2 components 
include a MDSWriter instance to store 
results in the pulse file

Use case: A simulation program
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� Implemented by a (subclass of) 
MARTE2_OUT

�It specifies the Parameters and the 
Inputs.

� Input fields refer to stored input signals 
that are read from the pulse file by means 
of the generated Data Source instance 

� The generated MARTe2 components 
include a MDSReader instance to read 
data from the pulse file, and a specific 
DAC DataSource for waveform 
generation.

Use case: Waveform generation
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� Implemented by a set of MARTE2_IN, 
MARTE2_GAM and MARTE2_OUT 
instances

� Input fields of MARTE2_GAM instance 
will contain a reference to output fields of 
MARTE2_IN

� Input fields of MARTE2_OUT will refer 
to output fields of MARTE2_GAM

� The generated MARTe2 components 
include two MDSWriter instances to write 
data into the pulse file, one DAC 
DataSource for waveform generation, 
and one ADC DataSource for Data 
Acquisition.

Use case: Control Loop
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� The proposed approach provides a full integration of MARTe2 and 
MDSplus

� A subset of the possible MARTe2 configurations can be described in 
this way

�However it covers the use cases of interest

� A real world MARTe2 configuration file is composed of many 
thousands of lines, and editing it manually is impossible

� Users do not need a detailed MARTe2 knowledge for system 
configuration

� Developers can easily wrap MARTe2 DataSources and GAMs into 
MDSplus devices by inheriting from the python superclasses
MARTE2_GAM, MARTE2_IN and MARTE2_OUT.

� The final target will be the generation of MARTe2 GAM and 
MDSplus MARTE2_GAM device directly from Simulink.

Conclusions


