
Data-acquisition with MDSplus and custom devices.
Fernando Santoro

Thomas Fredian, Stephen Lane-Walsh and Joshua Stillerman
PSFC at MIT

fsantoro@psfc.mit.edu

MDSplus is a software tool dedicated to data acquisition, storage and
analysis used for complex scientific experiments. We will show how to set

up a very simple experiment, manage data retrieval, storage and
consumption using MDSplus and Python. JupyterLab is used as the
interactive development environment.

ABSTRACT

STEPS TO RUN THE DATA ACQUISITION SOFTWARE

Ø Set up the system environment: os.environ[‘[treeName]_path']

Ø Launch the data viewer: MDSplus jScope

Ø Create an MDSplus Model Tree: addDevice()

Ø Configure the data acquisition parameters.

Ø Set the current shot and create the pulse: createPulse()

Ø Execute the INIT method to start the data acquisition: init()

Ø Execute the STOP method to stop the data acquisition: stop()

VISUALIZING THE RESULTS

The results of the experiment can be visualized in three ways:

Ø Dynamically: Real time visualization using jScope (Fig. 4)

Ø Data Analysis: using Python libraries, shown inside JupyterLab.

Ø Tree content: the data structure visualization using jTraverser (Fig. 5)

EXCECUTION and OUTCOME of the EXPERIMENT

As a data acquisition software, designed as a new paradigm for data
analysis, MDSplus has been extensible used as one of the main software

tools to acquire and organize the vast amount of data coming
from magnetic fusion energy programs. The intent of this poster is to show
that it can easily be used for any kind of data-acquisition systems: from the
most complex to the simplest.

BACKGROUND

METHOLOGY

A custom device is used as the data provider. This device is an open-source

electronics platform hardware that consists of a microcomputer (Fig.1) and
sensors (Fig. 2).

Fig. 3 shows the JupyterLab IDE. It allows for code development, notebooks
and data visualization.

IMPLEMENTATION

MDSplus Device represents the hardware in the data acquisition system.
Information associated with a given device will be stored in a set of nodes
of the pulse file. Figure 5 shows what the tree structure looks like for our

particular device.
The code that represent the device (see Figure 3), written in Python, has
the following structure:
• The Device: an Python subclass that defines the Arduino device.
• The Tree structure and nodes: defined in MDSplus parts[].
• The Port communication with the device and sensors: PySerial library.
• The INIT and STOP methods: to start and stop the data acquisition.
• The TREND method: for acquisition using launchd/systemd.
• The STREAM method: for acquisition using the data streaming.

Additionally, an Arduino sketch needs to be uploaded into the
microcontroller.

HARDWARE

The device (Fig. 6) itself is composed by the following:
• An Arduino UNO: a microcontroller board (Figure 1)
• A Garmin LIDAR-Lite v3HP sensor. (Figure 2)
• A DHT11 temperature and humidity sensor.

METHODS / IMPLEMENTATION

•Real-time results can be seen in Fig 4. Data analysis can be done within
JupyterLab.

•Limitation: jScope needed to be run as a subprocess from within
JupyterLab to be able to see real-time data streaming.

•Limitation: it is difficult to communicate with a serial port device from
within JupyterLab.

•The structure of the code that represent the device can be used as a
template for a variety of devices, sensors and systems in general.

RESULTS and CONCLUSIONS

Fig 2. Garmin Lidar-Lite r3HP (left) and
Temperature/humidity sensors.

Fig. 5 The data tree
structure

ID: 520

MDSplus online documentation (http://www.mdsplus.org); Arduino UNO (https://www.arduino.cc);
Garmin (http://www.garmin.com)

REFERENCES and ACKNOWLEDGEMENTS

Fig 1. Arduino UNO
microcontroller.

Fig. 3. JupyterLab IDE showing
code and model tree creation.

Fig. 4. MDSplus jScope showing data acquisition in real-time.

Fig. 6. The Device.

This work was funded under DOE cooperative agreement DE-SC0012470.

http://www.mdsplus.org/
https://www.arduino.cc/
http://www.garmin.com/

