Advances and Challenges in KSTAR plasma control toward long-pulse, highperformance experiments

Sang-hee Hahn, J.G. Bak, Y.M. Jeon, J.W. Juhn, H.S. Kim, Heungsu Kim, H. Han, M.H. Woo, M. Joung, J.H. Jeong, T.H. Tak, J. Chung, S.W. Yoon *National Fusion Research Institute, Daejeon, Korea*

<u>hahn76@nfri.re.kr</u>

M.L. Walker, N.W. Eidieitis, J. Barr, A.S. Welander, D.A. Humphreys, B.G. Penaflor, D.A. Piglowski

General Atomics, San Diego, USA

D. Mueller, M.D. Boyer, K.Erickson Princeton Plasma Physics Lab, Princeton, USA

G.W. Shin

University of Science and Technology (UST), Daejeon, Korea

Plasma control system (PCS) in KSTAR

- An integrated set of controllers to create, control and shut down the plasma
 - Crucial to KSTAR operations / Main control tool for experiments
 - Another successful adaptation of DIII-D PCS software (2005-present)
 - First operations at 2007-2008 [1], upgrade to 64-bit systems in 2016 [2,3]
 - Development done thru US-KSTAR collaborations & domestic researchers

Enhancement of computing capability by migrating to 64bit + MRG-realtime

• New Intel 64bit RT system ^[3]

- Modern Intel Xeon architecture + CERN MRG realtime
- Reinforce feature of <u>automated RT code generation</u> (real-time Feedforward ^[4], ONFR ^[5])
 - similar to planned ITER control implementations
- Catch up with the extending requirements by the physics experiments proposed to KSTAR
 - Covering up to 20 kHz cycle
 - Single box + Up to 9 real time processes
 - 36 different actuators (gas, heating, coils)
 - +200 analog inputs (AI)
 - +600 digital I/O through Reflective Memory / DO modules
 - New interface for fast interlock

- The rtEFIT boundary accuracy & speed enhanced by new system
 - within ~1 cm errors + more iterations allowed

[4] M.L. Walker, M.J. Lanctot, S.-H. Hahn, 2016 IEEE Conference on Control Applications (CCA). (2016) 605–610.
[5] N.W. Eidietis et al., Nucl. Fusion. 58 (2018) 056023.

KSTAR

Dedicated RT multichannel diagnostics operating for PCS

category	Status (2018)	# of channels	Plan 2019-2020
Axisymmetric magnetic diag. (MD)	RC, VCM, FL, MP, DL, LV, IVC	166	No HW installation but continues enhancements for real-time EFIT
3D MD	MPZ at passive plates Mirnov with bandpass	24	+ Mirnov with higher sampling [up to 100 kHz]
Kinetic / optical	MMWI or TCI (selectable)	2	+ MSE for adding RT(<i>MSE</i>)EFIT [12x2 ch]
Coil control	TF, PF, IVCC	200 (RFM)	+ add dedicated coil DAQ for safety
Etc.	Fast interlock interfaces	6	+ additional disruption detection signals (TBD)

Integration of various real-time components for sophisticated plasma experiments

KSTAR

IAEA TM CODAC 2019

Simulator environment for axisymmetric magnetic control enabled more costeffective operations

- Based on nonrigid response model [6], reflecting shape deformation
 - Validated for the vacuum, PF actuators and shape controls [7]
- Development by MATLAB/Simulink + Automatic code generation by Simulink Coder
 - Can switch/verify directly from simulation to real experiment

[6] A. Welander et al, Fus. Sci. Tech. 47 (2005) 763–767.

[7] S.-H. Hahn, et al., Fus. Eng. Des. 89 (2014) 542–547.

Extension of operational space made by improved magnetic controls

Access to high-gmin & high-lp regime utilizing early-diverted, low-li shots

#15433 : typical H-mode #20812 : new early diverted scenario Early-diverting strategy enables diverted shape at t~0.45s:

- reduction of li

+

- early beam injection
- optimal flux consumption (important for long pulse)

Challenge for SC tokamak - slow PF coils, different freq responses

- need stronger VS
- accumulation of control errors to integral gains
- changes on magnetics quality

New pulse length record of ~90s by high- βp H-mode discharges (2018)

K§TAR

ITER shape access made easy by advanced magnetic control scheme: Improved VS + real-time Feedforward + MIMO Xpt controls

at KSTAR

KSTAR

IAEA TM CODAC 2019

Kinetic controls evolving for density / heating / MHD

KSTAR

IAEA TM CODAC 2019

May 13, 2019

Kinetic controls evolving for density / heating / MHD

Search & suppress demonstration ^[14] (2015) using n=1 TM amplitude detector

RT EC mirror controls for TM suppression

KSTAR

IAEA TM CODAC 2019

Categorized fast interlock scheme by "severity" provides ways to plan complex sequential actions

Severity levels determined by plasma current (lp) controllability:

- Ip survivable : low \rightarrow continue discharge
- Ip controllable to rampdown : med \rightarrow soft stop
- Ip uncontrollable : high \rightarrow hard stop

Compatible with upcoming ONFR [5] design

Connected with the KSTAR Fast Interlock System (FIS)[15]

[15] Myungkyu Kim et al., this conference P/1-1

Categorized fast interlock scheme by "severity" provides ways to plan complex sequential actions

K§TAR

IAEA TM CODAC 2019

May 13, 2019

The path to successful fusion belongs to control advances

The path to successful fusion belongs to control advances

New sophisticated ideas recently tested by standalone systems for future integrated control advances

Feasibility experiment for Te profile feedback using NB / ECH ^[17]

[17] H.S. Kim et al., Fus. Eng. Des. 2018

Automation of real-time detection for L→H ^[18,19] thru Machine Learning : offline test accuracy above 90%

KSTAR

Developments ongoing toward more sophisticated controls for achieving advanced operational regime

- New real-time functions planned
 - ✓ Integrate RT controls for 6 NB sources / 6 gyrotrons / Helicon
 - ✓ Fast interlock / ONFR improvements for disruption-free operations
 - ✓ Enable multibox extension for high-freq diagnostics
 - ✓ Improve adaptive shape control for easier access of ISS/IBS
 - ✓ Control simulator (simserver) improvement with NB / VDE responses
- New real-time diagnostics technology investigation ongoing
 - Technology dev for real-time Profile diagnostics (ECE / TS ^[20] / MSE ^[21])
 - Collaboration efforts on high-freq computer system for real-time MHD analysis ^[22]

[20] Seung-Ju Lee et al., this conference, O/8-2
[21] Hanmin Wi et al., this conference, P/4-2
[22] Keith Erickson et al, this conference, O/4-3

