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2. Beginning with Gas Fueling Modulation to Use a Simplified Solitary Model of Particle Balance

During the early campaigns of the KSTAR project, feedback control of plasma density has been successfully

commissioned at the very first attempt by using a transfer function analysis. A stable and robust discharge was chosen for

a test-bed i.e. 300 kA (I p) 2.0 T (B t ) ohmic circular limited plasma. Before direct feedback control, pre-programmed

fueling modulation was carried out by puffing the deuterium gas. Line-averaged plasma density was measured in real-

time by a 280 GHz interferometer system. From the open-loop experiments, both the density decay time (τi
* ) and the

external fueling efficiency (fex) were obtained approximately: 3.0 to 5.0 s and 10 to 20 % respectively. By transfer

function analysis, several transient responses such as rising time, settling time and overshoot ratio were estimated in a

certain range by the measured ranges of τi
* and fex. It is found that τi

* has little effect on those response characteristics

while fex plays primary role together with magnitude of the proportional gain K p . This is due to predominance of valve

response whose characteristic time τ v was approximately 60 ms, which is much shorter than τi
* . Considering these

values, K p for closed-loop control were set 2.5 as minimum and followed by stepwise increment to reduce steady-state

error without any integral gain K i to avoid any uncertainty. The small initial K p was chosen being concerned on

excessive fueling. Similarly the target density waveform was also initially low and gradually increasing, eventually

followed by flattop period for one second before current ramp-down. In this way the first density feedback control was

successfully finished although the transient responses were far different from the experimental result while the predicted

steady-state error was in good agreement with the experimental undershoot. By replacing τ v with arbitrary

characteristic time τ a two different settling time in the two subsequent feedback experiments were both matched well

with a single τ a∼120 ms . This is due to a digital low-pass-filter included by a plasma control system (PCS) acting as

50 ms delay of response. Including the filter, transfer function becomes 3-pole system and no more simple analytic

expression of response characteristics were available. Instead, they are fully numerically computed. The changed settling

times including the digital filter matched well with τ a ∼50 ms which became much closer to the original τ v . In

summary, response characteristics in longer period (settling time and steady-state error) are evaluated well with the

transfer functions by using the simple particle balance model with fixed τi
* and f ex and fueling delay estimated by

D α signal including digital filter. However rising time and overshoot still does not agree with any values of τ a , which

implies the density feedback system is not simply the second or third order or even linear system. For more accurate

prediction of response, therefore, nonlinear or time-varying numerical model will be necessary especially in dealing with

the recycling coefficient R that underlies in τi
* ≡ τi /(1−R) where τi is particle confinement time.
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6. Summary and Future Work 

Initial Components of Density Feedback System in KSTAR
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 To study plasma physics effectively and do experiment efficiently
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 To help achieve KSTAR’s goal – steady-state operation with advanced scenario
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• L/H power threshold experiments
• SOL characteristics analysis with FRPA
• Mode locking with RMP   

• Rotation reversal experiments
• MGI-based disruption-mitigation experiments
• And many more …

• Long-pulse density sustainment against either exhaust or increase

The Simplified Solitary 
Particle Balance Model 𝑛𝑖 𝑡

′ = 𝐶𝑒−𝑡
′/𝜏𝑖

∗
+ 
𝜏𝑖
∗𝑓𝑒𝑥Φ𝑒𝑥

𝑉𝑝

𝑛𝑖 𝑡
′ = 𝐶𝑒−𝑡

′/𝜏𝑖
∗

When Fuels are Turned OFF - 𝝉𝒊
∗ is obtained

Once  𝝉𝒊
∗ is obtained, 𝒇𝒆𝒙 obtained as below

𝐺𝐹𝐵 =
𝐺𝐹𝐹
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Rule of Thumb for the First Shot Attempt

Use low target and gain especially in the beginning of the feedback 
• Not to overshoot too much (avoiding radiative cooling and Greenwald density limit)

Avoid to use integral gain
• For simple and intuitive design and result
• Instead, manually increase gain to reduce steady-state error

No use of derivative gain 
• Unexpected signal noise may amplify the signal 

Δ𝑛𝑖 , 𝑠𝑠 =
𝑛𝑡𝑉𝑝 − 𝜏𝑖
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Contribution of Each Term on Density Modulations

Steady-state Error Directly 
Calculated with the Model
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𝜁𝜔𝑛

= −2𝜏𝑣 log 0.05 1 −
𝑉𝑝1019
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 A safety-oriented density feedback experiment was fulfilled in the early phase of the KSTAR experiment
• One of the most reproducible discharge was chosen as a test-bed – circular ohmic limited plasma in 2.0 T, 0.3 MA
• Low-Ip leads to low Greenwald density limit ~4.7 x 1019 m-3

• Because this was the first trial, no classical tuning such as Ziegler-Nichols tuning was allowed due to unstable regime approach.

 Before the feedback control, several preprogrammed fueling modulation experiment was carried out 
• to obtain essential parameters of the simple global particle balance model

• By using the parameters, the transfer function of the feedback control system was defined. 
• from the transfer function, the expected performance of the feedback control system was calculated
• Critical gain, overshoot ratio, settlement time and rising time

• Based on the performance indicator, only proportional gain was applied for the plasma experiment. 
• with increasing target 
• The result was successful with the expected steady-state error due to the absence of integral gain

 Using integral gain to suppress the steady-state error will be studied and fulfilled. 
 Densities in higher-performance plasmas will be controlled such as diverted plasmas and H-mode plasmas
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4. Analytic Approach to the Feedback System Performance

5. The First Density Feedback Control Experiment

Gain and Target Setting

Results of The First Density Feedback Control Comparison with the Analytic Approach
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