

TM CODAC 2019 MAY 13th-17th Daejeon, Korea

Low-risk Beginning of the Density Feedback Control in KSTAR

June-Woo Juhn^{a*}, Sang-hee Hahn^a, Yong-Seok Hwang^b, K. P. Kim^a, Y. O. Kim^a, Y. U. Nam^a and J. I. Song^a

^a National Fusion Research Institute, Daejeon, Korea, ^b Seoul National University, Seoul, Korea *jwjuhn@nfri.re.kr

ABSTRACT

During the early campaigns of the KSTAR project, feedback control of plasma density has been successfully commissioned at the very first attempt by using a transfer function analysis. A stable and robust discharge was chosen for a test-bed i.e. 300 kA (I p) 2.0 T (B t) ohmic circular limited plasma. Before direct feedback control, pre-programmed fueling modulation was carried out by puffing the deuterium gas. Line-averaged plasma density was measured in realtime by a 280 GHz interferometer system. From the open-loop experiments, both the density decay time (τ_i^*) and the external fueling efficiency (f_{ex}) were obtained approximately: 3.0 to 5.0 s and 10 to 20 % respectively. By transfer function analysis, several transient responses such as rising time, settling time and overshoot ratio were estimated in a certain range by the measured ranges of τ_i^* and f_{ex} . It is found that τ_i^* has little effect on those response characteristics while f_{ex} plays primary role together with magnitude of the proportional gain K p. This is due to predominance of value response whose characteristic time τv was approximately 60 ms, which is much shorter than τ_i^* . Considering these values, *K p* for closed-loop control were set 2.5 as minimum and followed by stepwise increment to reduce steady-state error without any integral gain K i to avoid any uncertainty. The small initial K p was chosen being concerned on excessive fueling. Similarly the target density waveform was also initially low and gradually increasing, eventually followed by flattop period for one second before current ramp-down. In this way the first density feedback control was successfully finished although the transient responses were far different from the experimental result while the predicted steady-state error was in good agreement with the experimental undershoot. By replacing τv with arbitrary characteristic time τa two different settling time in the two subsequent feedback experiments were both matched well with a single $\tau a \sim 120 \text{ ms}$. This is due to a digital low-pass-filter included by a plasma control system (PCS) acting as 50 ms delay of response. Including the filter, transfer function becomes 3-pole system and no more simple analytic expression of response characteristics were available. Instead, they are fully numerically computed. The changed settling times including the digital filter matched well with $\tau a \sim 50 ms$ which became much closer to the original τv . In summary, response characteristics in longer period (settling time and steady-state error) are evaluated well with the transfer functions by using the simple particle balance model with fixed τ_i^* and f ex and fueling delay estimated by $D \alpha$ signal including digital filter. However rising time and overshoot still does not agree with any values of τa , which implies the density feedback system is not simply the second or third order or even linear system. For more accurate prediction of response, therefore, nonlinear or time-varying numerical model will be necessary especially in dealing with the recycling coefficient R that underlies in $\tau_i^* \equiv \tau_i / (1-R)$ where τ_i is particle confinement time.

Motivation of Density Control and Recent Achievement

	. /		••••••	~	20						
	I _P (IVIA)	Gains and Tim	<u>le</u>	G _P	2.0		τρ	5ms	#1/353		
		Constants Chan	ged	G _I	400		τ _ι	120 s	· · · · · · · · · · · · · · · · · · ·		
Target = 3.	5				A						
	n _e (10 ¹	¹⁹ m ⁻³)									
		seconds of Control :	One of	the	World's	s L	onge	est H-mo	de Density Control in Tokamaks	· · · · · · · · · · · · · · · · · · ·	
	Maximum allowed voltage = 2.0V					Decreasing as wall recycling increases					
	Gas Puffi	ng (V)			V	•••••		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Www.www.WVV		
	Almost Identical Waveform										
	p (10 ⁻⁵ r	nbar)									
	Tor. D _a	(V)									

KSTAR

Disruption Mitigation Study with

.... n

0.6

0.8

0.2

0

0.4

t [s]

ACKNOWLEDGMENTS

This work was supported by Korean Ministry of Science and ICT under the KSTAR Project Contract.

2. Beginning with Gas Fueling Modulation to Use a Simplified Solitary Model of Particle Balance

3. Transfer Function for Density Feedback Control System

4. Analytic Approach to the Feedback System Performance

8

6

 $G_{\mathbf{p}}$

Rule of Thumb for the First Shot Attempt

✓ Use low target and gain especially in the beginning of the feedback

• Not to overshoot too much (avoiding radiative cooling and Greenwald density limit)

✓ Avoid to use integral gain

- For simple and intuitive design and result
- Instead, manually increase gain to reduce steady-state error

\checkmark No use of derivative gain

• Unexpected signal noise may amplify the signal

Gain and Target Setting										
Gain (G_P)	Period [s]	$n_t(/10^{19})[m^{-3}]$	Period [s]							
2.5	1.5-3.0	0-1.5	0.0-2.0							
3.0	3.0 - 4.0	1.5 - 2.0	2.0 - 4.0							
3.5	4.0 - 5.0	2.0	4.0 - 5.0							

Comparison with the Analytic Approach

2

6. Summary and Future Work

6

G_p

2

0

- ✓ A safety-oriented density feedback experiment was fulfilled in the early phase of the KSTAR experiment
 - One of the most reproducible discharge was chosen as a test-bed circular ohmic limited plasma in 2.0 T, 0.3 MA
 - Low-Ip leads to low Greenwald density limit ~4.7 x 10¹⁹ m⁻³
 - Because this was the first trial, no classical tuning such as Ziegler-Nichols tuning was allowed due to unstable regime approach.

G_p

- ✓ Before the feedback control, several preprogrammed fueling modulation experiment was carried out
 - to obtain essential parameters of the simple global particle balance model

• By using the parameters, the transfer function of the feedback control system was defined.

- from the transfer function, the expected performance of the feedback control system was calculated
- Critical gain, overshoot ratio, settlement time and rising time
- Based on the performance indicator, only proportional gain was applied for the plasma experiment.
- with increasing target
- The result was successful with the expected steady-state error due to the absence of integral gain

Using integral gain to suppress the steady-state error will be studied and fulfilled.

✓ Densities in higher-performance plasmas will be controlled such as diverted plasmas and H-mode plasmas