EAST research activities on control and data toward CFETR

B.J. Xiao^{1,2}, F. Wang¹, B. Shen¹, Z.P. Luo¹, Q.P. Yuan¹,
Y. Huang¹, K. Wu¹, Y. Guo¹, Y.H. Wang¹, S.L. Chen¹, X.Y.
Sun¹, R.R. Zhang¹, G. Calabrò³, F. Crisanti³, R. Albanese⁴,
R. Ambrosino⁴, G. De Tommasi⁴, A. Pironti⁴, F. Villone⁴,
L. Barbato⁴, D. Eldon⁵, H.Y. Guo⁵, D.A. Humphreys⁵

¹ASIPP(China), ²USTC(China), ³ENEA(Italy), ⁴CREATE(Italy), ⁵General Atomics(USA)

bjxiao@ipp.ac.cn

Contents

- Introduction to CFETR Engineering design and R&D
- Data management and collaboration network for CFETR design
- CODAC and PCS concept for CFETR
- EAST plasma control for CFETR
 - Magnetic control: Z, MIMO, advanced shape,
 - Heat load control: radiation, detachment, QSF
 - Kinetic control: profile, beta, Vloop
- Summary

CFETR Engineering Design Started @2018

	B.1 100MW HB	B.2 200MW HB	B.2 500MW HB	B.3 1GW HB	B.4 DEMO level HB	N •
Pf	114	250	558	1128	2192	
Pinternal	190	196	202	222	75	. 0
Qplant	0.46	0.75	1.40	2.41	12.96	•
Qplasma	1.54	3.35	7.65	15.30	795.16	
Pnetelec	-103	-49	80	312	891	•
Pn/Awall	0.12	0.25	0.57	1.15	<mark>2.23</mark>	
BetaT	0.006	0.009	0.014	0.019	0.029	
BetaN	1.00	1.20	1.50	2.00	3.0	IV
fbs	0.40	0.40	0.40	0.50	0.75	~
HITER98Y2	1.01	1.09	1.18	1.19	1.54	
fohm	0.30	0.30	0.30	0.30	0.24	
Pcd	74	74	73	74	3	•
lp	8.61	10.34	12.92	13.78	13.78	-
Во	6.5	6.5	6.5	6.5	6.5	
Ti(0)/Te(0)	13	17	24	24	34	•
n(0)	0.67	0.74	0.82	1.16	1.23	
nbar/nGR	0.79	0.72	0.64	0.85	0.90	
Zeff	2.45	2.45	2.45	2.45	2.45	~
P/R	7.58	9.33	12.63	19.11	<mark>22.97</mark>	6
q95_iter	8.87	7.39	5.91	5.54	5.54	J

Main Parameters

- R= 7.2
- a=2.2m
- Bt=6.5T
 - CS magnet:≥ 480 VS
- lp: 6-14MA

Main Features:

- More reliable Plasma targets
- DEMO validation
- Tritium sustain
- Availability: 50%
- Hybrid (30% ohmic), 480VS
- ~ 8 hours for 12MA, days for

6-10MA

CFETR Main Challenges

- Burning Plasma (Q =10-30, Q>30) for DEMO
- Steady-state Operation
- Particle and Heat removal
- T breeding and self-sustainment
- Plasma wall interaction
- Remote maintenance
- Materials
- Safety and license

Main CFETR R&Ds in ASIPP start @2019

SC Magnets R&D

• SC Test

Material/ Conductor/Magnet

- **CFETR Magnets**
 - 1 1:1 TF Coil
 - CS Model Coil
 - Prototype CS insert with high temperature SC conductor
- Integrated Test Facility

Toward CFTER Magnets (TF, CS, PF (ITER PF6))

R&D on Main & Divertor

- Material Test
 - $\Phi~10~cm$, SS with 10^{24}/s $~10 MW/m^2$
- Heating and CD
 - NBI+ECRH+RF+LH,
- Component Test (Full Size)
 - Thermal-hydraulic, EM, Plasma
- Assemble and Maintainance
 - Remote Handling
- **Experiments on EAST**
 - EAST Lower Divertor

Toward CFETR, Divertor and Heating & CD Key Tech.

Future R&D Area (40 hectares)

Data Management and Collaboration Network for CFETR Engineering Design

- Main data during CFETR R&D phase
 - 3D Models / Components ~ One Million
 - Design Documents / Reports ~ 100 Thousands
 - User Data ~ 1000
- A data management framework has been designed to manage all the data for CFETR design:
 - 3D Models design platform
 - Collaboration design network
 - Design documents management
 - User authentication & authorization

3D Models Design Platform

- The whole platform is constructed based on VPM and CATIA.
- VPM Virtual Product Management, designers can be connected through CATIA software into this platform, and work together through collaboration network connection.

Collaboration Design Network

• Based on WAN Optimization Controller (WOC) Network

- Virtual Private Network(VPN): To creates a safe and encrypted connection over a less secure network (current phase 100Mbps)
- WAN Optimization: Data deduplication
- Secure Data Transfer: File Transfer Encryption

Design Documents Management

 A web-based document management system with powerful version control and access management has been developed for CFETR design documents.

Q.搜索

00.总体集成方案

02.核安全体系研究 2018-03-20 21:16:46

2018-03-20 21:17:31 **05.**数据库管理系统设计 2018-03-20 21:16:58 会议 2018-07-05 10 23:04 项目か 2018-06-14 02:35:27

01.装置物理设计与参数优化 2018-03-20 21:17:59

03.装置总体集成和工程设计 2018-03-20 21:17:44 04.装置辅助系统设计

2

2018-04-02 23:36:15

CFETR Document Management

support android 4.0.3 or above

Login

v1.1 All Rights Reserved by ASIPP

Mobile App Access

username

Password password

Username

- 20 institutes & universities
- 450 user accounts
- 120 approved groups

CFETR Doc	un	1e	nt Manag	gen	nen	t		Plea	se Input Valu	e
Folders «	Path :	CFET	R > 01.装置物理设计与参数优化	<u>k</u> >						Acti
CFETR			Title	Preview	Туре	Last Change Date	Owner	Issue Date	Size	Status
■ 00.忠体集成方室 □ ○ 01.装置物理设计与条数优化	1		00. 物理设计集成文件		Folder	2018-04-03 09:57:01	qingwei.yang	2018-03-20 21:20:02		
□ □ 00. 物理设计集成文件	2		01. 任务1: 堆芯参数设计		Folder	2018-05-06 16:02:42	qilong.ren	2018-03-20 21:19:50		
田 <u> </u>	3		02. 任务2: 地芯参数设计校核		Folder	2018-05-06 16:03:15	min.xu	2018-03-20 21:20:12		
■ <u>03. 任务3: 位形优化设计</u>	4		03. 任务3: 位形优化设计		Folder	2018-04-03 09:57:34	jinping.qian	2018-03-20 21:21:16		
田 🛄 04. 任务4: 垂直不稳定性评估	5		04. 任务4: 垂直不稳定性评估及		Folder	2018-05-06 16:07:30	yong.guo	2018-03-20 21:20:45		
□□05.仕号5: 備進發设计、优化/ □06. 任务6: 約子控制	6		05. 任务5: 偏遠器设计、优化历		Folder	2018-04-03 10:05:50	rui.ding	2018-03-20 21:20:53		
□ □ 07. 任务7: MHD 不稳定性分析	7		06. 任务6: 粒子控制		Folder	2018-04-03 10:00:01	guoyao.zheng	2018-03-20 21:21:08		
申○08.任581.素純約子位理 ●○09.任581.参加手段的建設計 ●○10.任591.沙斯手段的建設計 ●○11.任511.場合與兩設計 ●○11.任512.場份上售公析 ●○13.任513.能心參取公计表分 ●○13.任513.能心參取公计表分 ●○15.任515.對的憲法化	8		07. 任务7: MHD 不稳定性分析		Folder	2018-04-03 10:01:14	ping.zhu	2018-04-03 10:01:14		
	9		08.任务8:高能粒子物理		Folder	2018-04-03 10:01:38	wei.chen	2018-04-03 10:01:38		
	10		09. 任务9: 诊断系统物理设计		Folder	2018-04-03 10:02:04	zhongbing.shi	2018-04-03 10:02:04		
	11		10. 任务10: 地芯等离子体核反		Folder	2018-04-03 10:02:34	zaixin.li	2018-04-03 10:02:34		
	12		<u>11.任务11:包层和屏蔽设计</u>		Folder	2018-04-03 09:56:37	qixiang.cao	2018-03-20 21:20:36		
	13		<u>12.任务12: 辐射场计算分析</u>		Folder	2018-04-03 10:03:19	songlin.liu	2018-04-03 10:03:19		
□ □ <u>10. 去议及例去报告</u> □ □ 17. 工程设计对物理设计的参数	14		13. 任务13: 核心参数设计要求		Folder	2018-05-06 16:33:22	songtao.wu	2018-04-03 10:04:08		
自日期	15		14. 任务14: 子系统参数设计要		Folder	2018-05-06 16:33:50	yong.liu	2018-04-03 10:04:35		
□ 02.核安全体系研究 ○ 03.装置单体集成和工程设计	16		<u>15. 任务15: 燃烧率优化</u>		Folder	2018-05-09 10:05:26	nan.shi	2018-05-07 16:54:46		
04.装置辅助系统设计	17		<u>16. 会议&例会报告</u>		Folder	2018-05-30 14:11:05		2018-05-09 08:59:22		
由	18		17. 工程设计对物理设计的参数		Folder	2018-05-30 14:07:38	qingwei.yang	2018-05-30 14:07:05		
	19		甚他		Folder	2018-03-20 21:21:02	qingwei.yang	2018-03-20 21:21:02		
	20 🔻		4 Page 1 of 1 ▶	N O				Dis	playing 1 t	o 19 of 19 i
	Access Information									

eb browser Access

CFETR CODAC & PCS R&D Started

Future plan for CFETR CODAC and PCS

Contents

- Introduction to CFETR Engineering design and R&D
- Data management and collaboration network for CFETR design
- CODAC and PCS concept for CFETR
- EAST plasma control for CFETR
 - Magnetic control: Z, MIMO, advanced shape,
 - Heat load control: radiation, detachment, QSF
 - Kinetic control: profile,...
- Summary

3D effects to the vertical stabilization: CarMa0 model

• CarMa0 is a linearized plasma response model, able to evaluate self-consistently the effect of 3D conducting structures on axisymmetric (n = 0) plasma evolution, using a coupling surface to describe the electromagnetic interaction between the plasma and the conductors.

Inside Ω : linearized Grad-Shafranov equations are solved, using 2nd order triangular finite elements mesh.

Outside Ω : eddy currents equations are solved in 3D conducting structures, using volumetric hexaedral mesh of conductors only.

On $\partial \Omega$: surface currents magnetically equivalent to the 'true' plasma perturbation.

13

3-D Carma0 Modeling reproduces exp. Z growth

Shot#	Experimental	3D model	2D model	3D no support	2D model with only vv
35288	96	99	77	238	N.A.
35289	102	90	72	204	2952
35290	84	88	70	197	2495
26102	210	201	127	1237	ΝΔ
Shot#	Exp	3D	2D	3D w/o support	2D VV
36537	227	230	144	2025	N.A.
36539	316	320	178	6278	N.A.
38074	152	141	99	467	N.A.
38148	197	174	109	835	N.A.
43896	136	151	105	538	N.A.
43897	152	147	103	505	N.A.
43907	194	178	115	880	N.A.
43908	241	276	150	4383	N.A.
43914	225	200	124	1241	N.A.
44003	222	221	133	1736	N.A.
44017	224	214	131	1553	N.A.
44018	243	222	134	1751	N.A.

PP

14

H

2D model can be derived by fit to the 3D calculation

Stability margin fit by distance (4.4 cm) of PFC to plasma

- ▶ Right Eqv. 2D: 10 resistivity to the support,
- others 1.15 resistivity
- Ref: Chen SL, NF(2015), PPCF(2016), Sci Rep(2016)

Shot#	Exp	3D	3D model with no support s	Eqv. 2D	2D	2D only VV
51406	103	101	199	112	72	1293
52688	80	79	139	93	61	622
52691	81	82	151	99	65	815
52692	76	76	134	90	59	573
52718	121	116	243	135	85	N.A.
54004	314	295	2442	295	157	N.A.
54006	305	298	2557	298	158	N.A.
54007	279	262	1545	263	144	N.A.
56059	157	130	302	146	91	N.A.
56773	275	296	2531	267	146	N.A.
56775	278	318	3301	282	152	N.A.
56848	208	214	923	217	125	N.A.
56849	205	214	915	216	125	N.A.
56871	206	213	912	216	124	N.A.
57362	159	148	385	163	99	N.A.
57364	161	150	391	166	101	N.A.
57393	159	140	347	153	94	N.A.

15

Vertical Stability Control

- Decoupled with shape control by not control the position directly
- Optimize the controller by considering the latency to reduce RMS velocity $V_{IC} = \left(\frac{\overline{1+s\tau_1}}{1+s\tau_2}\right) (K_1 \cdot I_{p_{ref}} \cdot \frac{sz_p}{1+s\tau_3} + K_2 I_{IC})$

Bandpass filter for matching delay

 Use Vloop to estimate dz/dt signal for better SNR

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{V_1 - V_2}{I_p} \frac{1}{\left(\frac{\partial M_{pl2}}{dz} - \frac{\partial M_{pl1}}{dz}\right)}$$

TSC reproduced Exp. Z control, and dzmax

Bang-bang control scheme in TSC

dZmax scanning:

Shot 52444, the trajectories of fast Z (dZfast), IC voltage command (V_C) , IC actual voltage (V_A) and corresponding IC current simulated by TSC (black line) are compared with experimental data (red line).

Numerical investigation of the Bang-bang methd for dz = 38.9 mm (blue line), 41.8 mm (black dash) & 44.8 mm (red dot) by TSC

MIMO control for PF coil current

MIMO control for plasma shape

- Using plasma response matrix to decouple the control for different control points $\Delta \psi = C_{PF} \Delta I_{PF} \rightarrow \Delta I_{PF} = M \cdot K_{PID} \Delta \psi$ • Truncated the decoupling matrix matrix to
- Truncated the decoupling matrix matrix to having more robust control

$$C_{PF} = USV^{T}$$

$$S = diag(s_{1}, s_{2}, \dots, s_{n})$$

$$s_{1} > s_{2} > \dots > s_{k} >> s_{k+1} > \dots > s_{n}$$

$$S_{k} = diag(s_{1}, s_{2}, \dots, s_{k}, 0, \dots)$$

$$M = VS_{k}^{-1}U^{T}$$

MIMO control for plasma shape

Radiation Feedback control

Latency: Gas Puff > 100 ms, SMBI ~ 1 ms

Radiation Feedback Control

REF: NF(2018)

H-mode detachment by feedback control of Div-LP js with D2 SMB

H-mode detachment via feedback controlof Div-LP js module with divertor neon seeding

- the particle flux reducedthe plasma stored
 - energy slightly increases rather than decreases
- the plasma lineaveraged density was maintained quite stably

QSF effectively reduces heat load to Div. Target

Long-pulse high-confinement ELMy-free UQSF discharge

 $\checkmark V_{Loop} \leq 0.$ $H_{98} > 1$, $\beta_P \sim 2$

✓ A long-pulse operation, ELMy-free highconfinement steady-state pulse, lasting up to 21s, is achieved and limited only by the imposed technical scenario constraints.

✓ A stable QSF configuration reached at ~2.7s, whilst the high-confinement was achieved at ~3.5s with H₉₈ ~1.2

- ✓ After 3.5s, until plasma ramp-down, the loop voltage is kept at 0 indicating full non-inductive current drive.
- Stable plasma parameters are maintained through whole discharge until the plasma ramp-down
 - ✓ Radiation either in the core or in the edge is kept constant, a good particle control & no impurity accumulation.

Framework of plasma current profile control in EAST

EAST

Preliminary Plasma current profile control in EAST

Summary

- For CFETR engineering design, a collaborative network, design platform and database, and document management have been built.
- CFETR CODAC and PCS development started.
- A series of plasma control researches have been conducted aiming at more robust magnetic control and controllability, kinetic control and heat load control and demonstration of future CFETR plasma controls.

