Automatic recognition of plasma relevant events: implications for ITER

J. Vega¹, R. Castro¹, S. Dormido-Canto², G. A. Rattá¹, M. Ruiz³

¹Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain ²Dpto. Informática y Automática - UNED, Madrid, Spain ³Instrumentation and Applied Acoustic Research Group, UPM, Campus Sur, Madrid, Spain

Motivation

- Nowadays, processing all information of a fusion database is a much more important issue than acquiring data
 - Massive databases
- Fusion devices produce tens of thousands of discharges but only a very limited part of the collected information is analysed
 - Physics studies normally limited to a few tens of shots
- Plasma behaviours are recognised in experimental signals by the identification of known patterns
 - Diagnostics produce the same morphological patterns in the signals for reproducible plasma behaviours
- The analysis of physical events requires their identification and temporal location
 - The recognition and location of events are the main concerns in relation to the analysis: <u>manual</u>, complex and very time consuming searching processes
- Long pulse devices (W7X or ITER) will have databases with very large number of signals and very long records
 - ITER: discharges 30 minutes long and up to 10⁶ signals per discharge

Motivation

- Can we identify relevant temporal segments in an automatic way?
 - *'relevant'* means *'with interest from some point of view'*: either physics or machine control
- An automatic first screening of discharges would allow focusing the analysis on a reduced set of time intervals
 - Irrelevant parts of the shot are discarded
 - Improvement of statistical relevance for known events
 - Practically all the information inside the databases can be used
 - Potential detection of unknown events that appear on a regular basis
- Automatic recognition of relevant temporal segments means
 - Reduction of human efforts
 - Standardization of criteria
 - It reduces the vulnerability to human errors: missing occurrences, subjective assessments or location errors

VACIÓN Cenro de Investigaciones Energidicas, Medicambienalie y Terrológicas

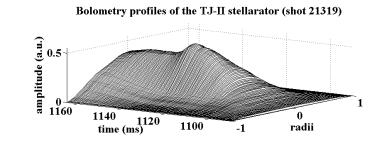
Overview

- Recognition of relevant events
- Algorithm to identify relevant events by detecting anomalies in signals
- Specific methods to detect anomalies in signals
- Conclusions

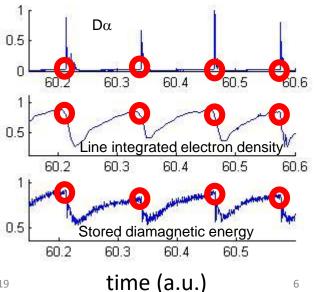
DBIERNO

How to proceed?

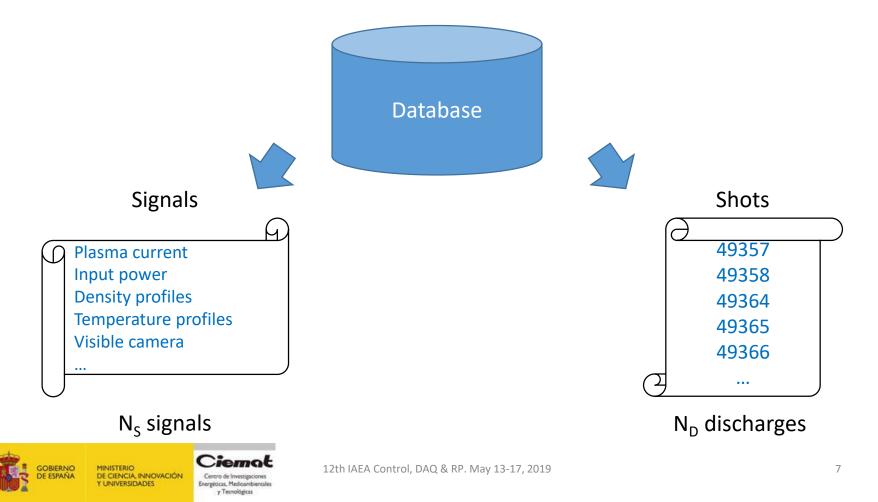
- Big Data techniques deal with heterogeneous, complex and massive datasets to identify patterns that are hidden inside enormous volumes of data
- ITER is expected to acquire more than 1 TB of data per discharge
- Signals can be time/amplitude series, temporal evolution of profiles (amplitude/radius relationship) and video-movies (infra-red and visible cameras)
- W7X or ITER databases satisfy the conditions of heterogeneity, complexity, size and hidden patterns to use Big Data techniques


How to recognise relevant events?

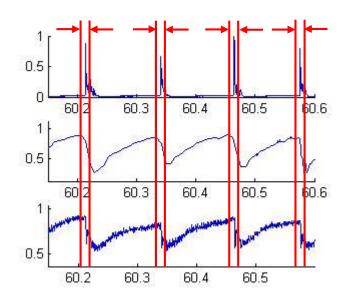
- A relevant event can be any kind of perturbation in the plasma evolution
- This is revealed in the temporal evolution of signals by means of unexpected variations (anomalies)
 - Time series
 - Amplitude, noise, presence/suppression of patterns with periodical structure
 - Profiles
 - Amplitude, hollow profiles, peaked profiles, wider profiles, gradients
 - Video-movies
 - Emission increasing
- An automatic search for events will have to locate anomalies in individual signals
- Interesting plasma behaviours are usually recognised by simultaneous anomalies in several signals



12th IAEA Control, DAQ & RP. May 13-17, 2019

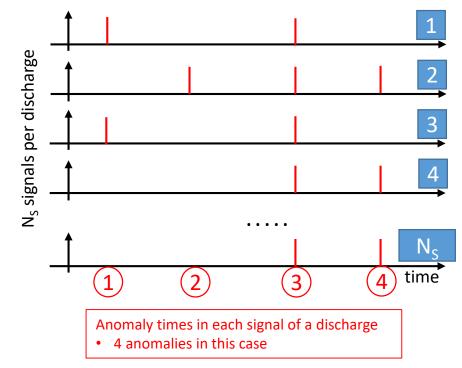


Edge localised modes (ELMs)


To perform automatic recognition, software codes have to be executed in an unattended way

• 1st step: to define a dataset of signals and a range of discharges

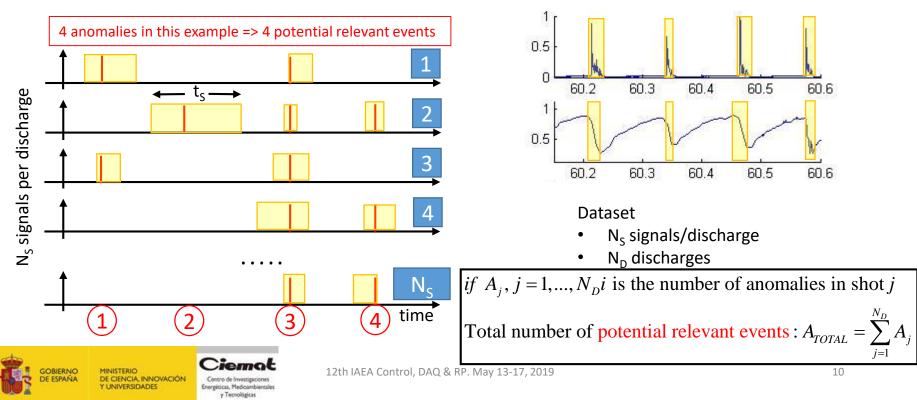
To perform automatic recognition, software codes have to be executed in an unattended way


- 1st step: to define a dataset of signals and a range of discharges
- 2nd step: to determine times in each discharge where individual signals show anomalies

Ciemo

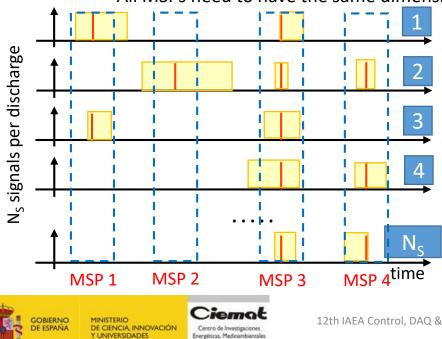
Energéticas, Medioambientale y Tecnológicas

DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES


To perform automatic recognition, software codes have to be executed in an unattended way

- 1st step: to define a dataset of signals and a range of discharges
- 2nd step: to determine times in each discharge where individual signals show anomalies
- 3^{rd} step: to chose the morphological patterns within a time interval t_s around the anomaly time

- 3rd step: to chose the morphological patterns within a time interval t_s around the anomaly time
 - The time interval t_s corresponding to the same plasma event could be quite different in several occurrences (in the same shot or in different shots)
 - The definition of the time interval means two selections: the starting time and the temporal length ${\rm t}_{\rm S}$
 - How to decide the interval of the different signals in an unattended way?


To perform automatic recognition, software codes have to be executed in an unattended way

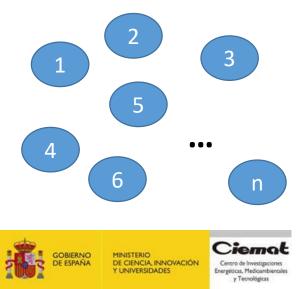
- 1st step: to define a dataset of signals and a range of discharges
- 2nd step: to determine times in each discharge where individual signals show anomalies
- 3rd step: to chose the morphological pattern of each individual signal within a time interval t_s around the anomaly time
- 4th step: to define multi-signal patterns (MSP)

- 4th step: to define multi-signal patterns (MSP)
 - A MSP is made up of all patterns of all signals determined in step 3 around a common anomaly time
 - Signals without recognition of anomaly are also part of the MSP
 - A MSP is characterised by the morphological patterns of all the signals with a common time interval
 - A criterion to define the common time interval is necessary taking into account **all** MSPs in **all** discharges of the dataset
 - All MSPs need to have the same dimensionality

y Tecnológicas

By assuming 200 sampling times per MSP and $N_s = 100$ signals with

- 95 time series
- 3 profiles (120 points each)
- 2 video-movies (500x300 each) and 2 bytes per sample, the total amount of memory is 120 Mbytes/MSP


To perform automatic recognition, software codes have to be executed in an unattended way

- 1st step: to define a dataset of signals and a range of discharges
- 2nd step: to determine times in each discharge where individual signals show anomalies
- 3rd step: to chose the morphological pattern of each individual signal within a time interval t_s around the anomaly time
- 4th step: to define multi-signal patterns (MSP)
- 5th step: to group the MSPs into a number of sensible clusters in an unsupervised way (this reveals the organisation of the MSPs)

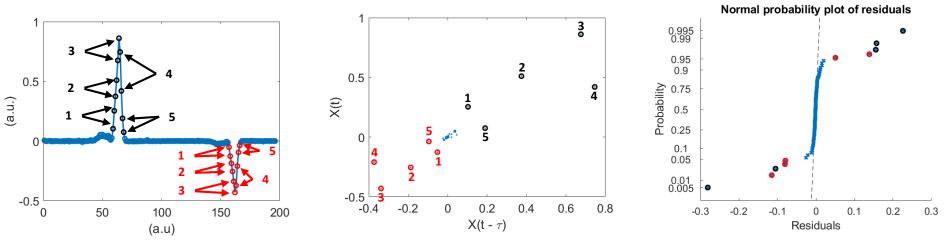
- 5th step: to group the MSPs into a number of sensible clusters in an unsupervised way (this reveals the organisation of the MSPs)
 - The grouping of the MSPs into clusters provides the classification of the relevant events
 - The different clusters can be labelled but the challenge is to identify each cluster with a physical behaviour of the plasma
 - To be done by experts **NOT** in unattended way
 - Clusters that are identified with physical behaviours can be used to increase the statistical relevance of the data analysis
 - Clusters that are not identified with physical behaviours but show statistical weight suggest the presence of plasma behaviours not recognised so far
 - Clusters without statistical weight can be considered outliers

- By assuming 1 relevant event/10 s the unsupervised classification process requires 720 Mbytes/minute per shot
- Thinking of ITER shots (30 minutes long), this implies 21 Gbytes of memory per shot
- By considering N_D = 500 discharges, the total memory amount to solve the unsupervised clustering is 10 Tbytes!!
 - The curse of dimensionality
- High performance computing is needed

To perform automatic recognition, software codes have to be executed in an unattended way

- 1st step: to define a dataset of signals and a range of discharges
- 2nd step: to determine times in each discharge where individual signals show anomalies
- 3rd step: to chose the morphological pattern of each individual signal within a time interval t_s around the anomaly time
- 4th step: to define multi-signal patterns (MSP)
- 5th step: to group the MSPs into a number of sensible clusters in an unsupervised way (this reveals the organisation of the MSPs
- 6th step: to develop supervised classifiers with the classes of step 5
 - Classification of new MSPs with confidence measures allows assessing the reliability of the whole process
 - In this step, classes of MSPs are well-defined
 - Supervised classifiers can be implemented under real-time conditions

How to determine anomalies in individual signals?

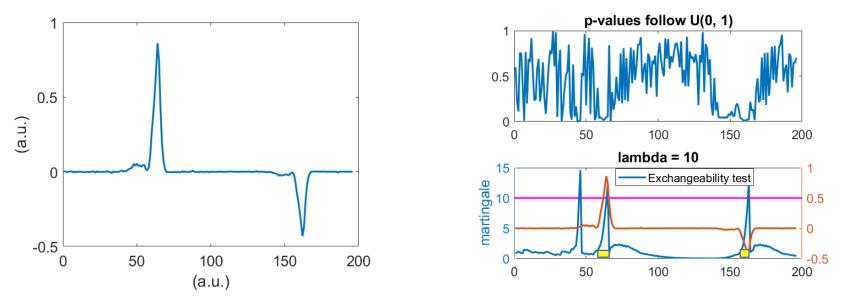

- Anomalies in the temporal evolution of signals translate the existence of changes in the plasma behaviour
 - The more abrupt the change of shape in a signal the more abrupt the change in the plasma evolution
- Our analysis has been based on recognising changes in individual signals
 - This allows establishing the potential set of signals related to each plasma behaviour
- Each anomaly has to include a time interval around its time value
 - The objective is to try the characterisation of the several plasma behaviours by combining the several shapes of the signals around the anomalies
- Methods to locate anomalies in signals should provide an estimation of the time interval around the anomaly

Methods to determine anomaly times and related time interval: 1

- Detection of outliers through a generalised linear regression model
 - If the temporal evolution is smooth, amplitudes between consecutive samples are very similar
 - In an space $Y(t \tau)$ -Y(t), samples are distributed along the diagonal
 - Samples outside the diagonal are outliers
 - These are identified as outliers in the normal probability plots of residuals

 The number of consecutive samples that are outliers determine the time interval

• If the sampling period is τ , in both cases the time interval is $10 \cdot \tau$



INNOVACIÓN ADES Centro de Investigaciones Energísticas, Medioambienal y Tecnológicas

12th IAEA Control, DAQ & RP. May 13-17, 2019

Methods to determine anomaly times and related time interval: 2

- Use of martingales for testing exchangeability
 - The only assumption in the data stream is the *iid* hypothesis
 - Samples are independent and identically distributed (iid)
 - Anomalies are detected as the samples are produced
 - Anomalies are recognised when the martingale crosses the lambda threshold
 - The assumed rate of false alarms is 1/lambda

 The time interval of the anomaly corresponds to the time in which the martingale increases to achieve the lambda value

Other methods

- To follow the temporal evolution of the Fourier components of a signal
 - See R. Castro et al. (P/2-2)
- Using deep learning methods
 - See G. Farias et a. (O/3-1)

DBIERNO

Conclusions

- Big data techniques will be essential for the automatic location and classification of plasma anomaly behaviours
- Methods for the automatic discovering of anomalies in signals have been discussed
- An algorithm to relate multi-signal patterns in an automatic way has been established
- Unsupervised classifications will allow labelling the clusters
 - High performance computing is needed
 - The correspondence between labels and physics behaviours has to be decided by experts
- Unsupervised clusters can be converted into reliable supervised classifiers
 - Real-time applications are possible

Thank you very much for your attention!