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- Current machine learning based disruption prediction
and its drawbacks

- Anomaly detection and its application in disruption
prediction

- Deep Nevural network anomaly detection based
disruption prediction and its result on J-TEXT

 Future work and summary
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Machine learning based disruption prediction ﬁpp?

 As the physics behind the disruption is not clear, machine
learning becomes a way to go

* Physics based predictors are mainly using locked-mode
amplitude

* Performance of Machin learning predictors are great
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* BUT, machine learning is not a silver bullet

for disruption prediction
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Its drawlbacks ﬁpp%

* [t needs disruptive data.
- As tokamaks get larger, disruption is getting more expensive.

*It's a black box.
* It is almost impossible to get it work on devices other than it
is trained on.
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Its drawbacks ﬁPP%

*So it is impossible to develop a machine
learning disruption predictors for a tokamak
without disruptions produced by it.

oO0ris it?
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Anomaly detection [FPP=

- Anomaly detection is the identification of rare events which
raise suspicions by differing significantly from the majority of the
data.

* Applicable Use Cases:

Anomoly Detection Using

echine. Leaming * Very unbalanced training dataset
) A /@ /\ /\ * Positive samples are rare and
- expensive
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TIME > are unknown
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Anomaly detection

* Non-disruptive discharges as normal

scenario
* Disruption precursor as anomaly i
- Benefit: 1
- No disruption needed in the training set -
« No needs to extrapolate to other devices 1 035 04 045] 05
« With adaptive training, can be deployed at very early [ ,,,,,,,,,,,,,,,,,

stage e
-0.1 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
time(s)

« No more bias on the occurrence of disruption
precursor
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Anomaly detecftion WPP%

* Preliminary experiment on J-TEXT
« Single signal predictor based on anomaly detection (SPAD) developed by JET

Adopted, modified and tested using J-TEXT signal
Using rule based feature extraction

Result: High success rate (TPR), but very low warming time (T,,..,), and very high false
alarm rate (FPR)

J-TEXT shot #1049101
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Deep learning Anomaly detection [FPP#Z

* (One of the) Time series anomaly detection technique

« Regression based Anomaly Detection

« Using a regression model to predict the future value of some given signals,
« |f the actual signal deviate from the expected value than an anomaly is found

Actual Anomaly
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Deep learning Anomaly detection [FPP 2

* Theory behind the Regression based Anomaly Detection
« Using a regression model to extract the characteristics of the normal

signals
« Actually modeling a probability distribution of the normal signals

« Disruption precursor is generated by a different distribution other than
that generated the normal signals

Normalized probability
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Deep learning Anomaly detection [FPP 2

- Deep learning time series prediction model
« Convolutional Neural Network + Recurrent neural network

« CNN: extract low dimension features of the high sampling rate
signal

« RNN: remember the history of the signal
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Deep learning Anomaly detection ﬁl’l’%

 Time series Deep learning prediction model
- The model we are using: 25623
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Deep learning Anomaly detection [FPP 2

® Training target: 3 Normalized Locked-mode signals 20 ms
into future

Toloidal mirnov
probe array

Poroidal mirnov
probe array

Keystone

br, 4 =\exsad2 x 100/3.05 —\exsad8 x 100/12.71
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Deep learning Anomaly detection [FPP 2

 Data set:
« J-TEXT 2017 autumn experiment campaign

 Helped by the "A Database Dedicated to the Development of
Machine Learning Based Disruption Prediction”

Dvaset———shorNumber

Training 320 Non-disruptive only
Validation 80 Non-disruptive only
Test 170 Non-disruptive +

77 disruptions
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Deep learning Anomaly detection [FPP 2

 Prediction result -Non-disruptive
J-TEXT shot #1053907(non-disruptive) J-TEXT shot #1052938(non-disruptive)

—— original signal
— predictive signal
_2— 1 | 1 1 1 1

—— original signal

—— predictive signal
—2F I I I I I I I

Normalized Locked-Mode
<

Normalized Locked-Mode
<

0.10 0.15 020 025 030 035 040 045 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Time/s Time/s

Zheng Wei, IFPR J-TEXT



Deep learning Anomaly detection [FPP 2

* Prediction result -Disruptions

J-TEXT shot #1053750(disruptive) J-TEXT shot #1052583(disruptive)
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Deep learning Anomaly detection

[FPP:

* The distribution of prediction residual for different types of

shots
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Deep learning Anomaly detection [FPP 2

* The evolving of the distribution of prediction residual for
different types of shot

Frequency histogram of residual
(20ms before disruption)
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Deep learning Anomaly detection 2

J-TEXT shot #1052938(non-disruptive) J-TEXT shot #1052583(disruptive)
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Deep learning Anomaly detection [FPP 2

 Performance evaluation
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. Summary ﬁl’l’?? \

* It is possible to build a ML disruption predictor without any
disruptions in the training set.

- An anomaly detection and neural network based
predictor is developed and tested using J-TEXT data

* The performance of the predictor is not as good as
supervised ML disruption predictor.

- But there is room for improvement.
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Future work ﬁPP?ﬂ

* More work on signal selection

 Further development on the disruption database and get
cleaner data

- Hyper-parameter search
- Adaptive iraining strategies

- Better deep learning feature extraction method like
autoencoder
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‘Thank you for your attentions
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