

The Use of the Radioactive Isotopes for Cheating in Gambling - An Interaction Between Different Authorities D. Orlokh (PhD)

INTRODUCTION

A case study of the use of radioactive isotope of ¹²⁵I as a radioactive marker for playing dice is presented. During a routine check at the border cross at Chingis Khan international airport, the detector was triggered, indicating the presence of a radioactive substance in the bag of an incoming passenger. Three gaming dice with elevated radioactivity were discovered and sent to the Radiation Control Laboratory for the further analysis. The laboratory analysis showed that the side with four points was painted with paint containing ¹²⁵I. Spectral analysis showed characteristic X-ray and Gamma ray lines and decay half-life time, found by comparing the intensities of two measurements done two months apart, prove that the paint contains the ¹²⁵I isotope.

This investigation became possible thanks to the comprehensive array of radiation monitoring systems working in 15 check points around the Mongolian borders to check passengers, cars and trains crossing the international border. The monitors are capable detecting neutron and gamma radiation. The case showed the importance of interactions in between different regulatory and law enforcement agencies.

Detector gates at: a. International border b.Chingis Khan international airport

SAMPLES AND METHODS

The CANBERRA gamma ray spectrometer, provided through TC project, with 20 keV LLD was used to detect both X-rays and gamma rays. The detector has a photopeak relative efficiency of about 40% and an energy resolution of 1.8 keV FWHM for the 1332 keV transition of ⁶⁰Co.

At the time of seizure, the total activity of three dices was more than 2 mSv/h near the surface. That means a person handling the dice for 10 hours could potentially get exposed to radiation exposure that are permitted for a radiation worker for a whole year.

Characteristics of y and X-rays lines used			lodine-125 Gamma emissions:		
Atomic num	lodine-125	suseu	Energy, keV 35.49	Intensity, % 6.7	Decay mode e
Half-Life: Possible pa	59.4 day		X-Ray em Energy, keV	issions: Intensity,	Σ
Parent Xe-125	Fraction (%) 100%	Decay Mode e+b+	27.47 27.20	% 75.7 40.6	Assignment Te Ka1 Te Ka2
Decay products: Daughter Fraction (%) Decay Mode			30.99 30.94	13.2 6.8	Te Kb1 Te Kb3
Te-125	100%	e	31.70	3.8	Te Kb2
4000		2000			
C 3000					•

RESULTS

Date of measurements		Energy, keV	Net photo peak count	Intensity, %	FWHM
2013 Sep 27		27.5	14761	1.02	0.671
		31.1	23055	0.83	0.685
		35.5	94457	0.29	0.701
2013 Nov 26		27.5	6028	1.49	0.67
		31.1	12218	1.24	0.685
		35.5	46161	0.43	0.701
/. \ [X.	///	I-125	VZ.S	
MX I	Half-L	_ife, N	Iominal	59.4	
$\langle \langle \rangle \rangle$	day	's	Found	60.6 ± 3.	5

CONCLUSION

- 1. Characteristic X-ray lines 27.5 keV, 31.1 keV and γ line 35.5 keV for ¹²⁵I were detected. Half life found to be 60.6 \pm 3.5 days and consistent with nominal value of 59.4 days for ¹²⁵I.
- 2. The dice handler during the 10 hours of a game could potentially get exposed to the radiation that is allowed for the radiation worker for whole year.
- 3. Considering that a similar case was detected in China¹ to mark a dice with paint containing Am-241 show that in the gambling world, players use marked dice to cheat.

REFERENCE 1. Radioactive Dice Seized in Xiamen Port (2010)

Poster Ref. Number: I/109 International Conference on Advances in Nuclear Forensics, Vienna, Austria; 7-10 July 2014 Tel: 976-89001963 E-mail: d.orlokh@ipt.ac.mn Web: http://www.ipt.ac.mn