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Abstract.  Processes conducted to purify uranium-bearing materials are chemical in nature. These 
activities provide the opportunity for chemical reagents or reaction intermediates to carry over into 
uranium end-products. Measurements of the chemical species in uranium oxide conversion materials 
may provide information important to forensic analyses, and signatures of the detectable chemical 
species may transform over time. To better evaluate detectable process signatures from conversion 
materials, we have initiated an effort to measure chemical speciation and to monitor temporal changes 
in materials subjected to controlled temperatures and relative humidities.   
 
1.  INTRODUCTION 
 
It has been reported that new analytical approaches are needed for the field of nuclear forensic 
science, and that there is interest in developing tools that are sensitive to chemical speciation 
for forensic analyses [1-2]. The range of chemical compositions of uranium oxides is 
considerable and complicated, providing challenges to measurement and interpretation, 
particularly in non-crystalline materials [3]. Previous work conducted by our research team to 
study environmental samples containing uranium revealed the value of synchrotron-based X-
ray Absorption Spectroscopy for probing chemical speciation of non-crystalline materials 
containing actinides [4]. We explored the use of synchrotron-based micro-X-ray absorption 
techniques developed at the Stanford Synchrotron Radiation Lightsource (SSRL) Beam Line 
2-3 to image elemental compositions and chemical speciation of environmental samples 
containing actinide oxide materials with the intent of understanding future transport and fate 
of actinides in the environment. 
 
One component of forensic analyses of interdicted materials is characterization of 
morphologies. Identification of chemical speciation of both major and minor components in a 
sample may be correlated with process history [5-9]. Both classes of signatures may be 
impacted over time by temperature and relative humidity. We employ powder X-ray 
diffraction (pXRD) analysis and synchrotron-based extended X-ray absorption fine structure 
(EXAFS) spectroscopy to characterize chemical speciation in uranium oxide powder samples, 
and to probe temporal changes in the valence states and chemical speciation following storage 
under controlled conditions of temperature and relative humidity. These tools provide 
complementary means for characterizing subtle changes in the material. 
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2.  EXPERIMENTAL 
 
The cornerstone of this work is the ability to synthesize and analyze high-purity uranium 
oxides samples from U960, a NIST Standard Reference material, for eventual comparison 
with uranium oxides prepared using common conversion processes. We prepared U3O8 by 
dissolution of U metal in HCl[conc], followed by precipitation of uranyl peroxide hydrate [3]. 
The UO2(O2) was heated in air to 500ºC for 8 hours to form amorphous uranium trioxide (A-
UO3). The orange A-UO3 was then ground using a mortar and pestle, returned to the ceramic 
boat, and heated at 800ºC under air for 20 hours. The product is a dark black powder. The 
phase was confirmed by powder X-ray diffraction analysis. 
 
Subsamples were subjected to controlled temperatures and relative humidities (LTLH: 5ºC 
and 25% relative humidity; HTLH: 37ºC, 15% relative humidity; LTHH: 5ºC and 97% 
relative humidity; HTHH: 37ºC, 89% relative humidity) in order to measure and compare 
potential changes in morphology versus chemical speciation as a function of time. Aging 
vessels consisting of modified Swagelok fittings are described elsewhere [10]. Lithium iodide 
and potassium nitrate salt solutions were used to control relative humidities within the aging 
vessels [11].   
 
Powder X-ray diffraction measurements were collected on either a Bruker D8 Discover 
diffractometer quipped with either a Hi-Star area detector or a NiI scintillation detector, and 
monochromatized Cu Kα X-rays, or on a Bruker D8 Advance diffractometer equipped with a 
Lynxeye 1-3 silicon strip detector and unconditioned Cu Kα X-rays. Samples for EXAFS 
measurements were prepared by diluting the uranium oxide analyte with boron nitride and 
then finely grinding the mixture with a Wig-L-Bug. Each mixture was loaded into nested 
aluminum sample holder equipped with Kapton windows and sealed with indium wire. 
Measurements were conducted at SSRL on end stations 10-2 and 11-2 under dedicated 
operating conditions (3.0 GeV, 5%, 450 mA) using a Si[220] (ϕ = 90) double-crystal 
monochromator. Morphologic images of materials were collected on an FEI Quanta 200F 
Field Emission Scanning Electron Microscopy (SEM). 
 
3.  RESULTS 
 
The pXRD analysis of high purity U3O8 material reveals pure α-U3O8, as shown in Figure 1. 
The purity of this material contrasts the compositions of legacy materials of known pedigree 
but prepared using synthetic routes common to commercial processing of uranium oxides. In 
these legacy materials, it was possible to measure chemical precursors, such as uranyl fluoride 
hydrate, uranyl peroxide hydrates, or ammonium diuranate [3]. 
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FIG. 1. Powder X-ray diffraction patterns of U3O8 measured following synthesis of the material (time 
= 0), and after storage for 2 years under the following conditions:  High Temperature High Relative 
Humidity (HTHH), Low Temperature High Relative Humidity (LTHH), High Temperature Low 
Relative Humidity (HTLH), and Low Temperature Low Relative Humidity (LTLH). 
 
The EXAFS spectrum for high purity U3O8 is shown in Figure 2. The U-O and U-U scattering 
paths calculated from α-U3O8 were used to model the EXAFS data sets.  
 



4 
 

 
FIG. 2. Fourier Transforms of U LIII EXAFS data of U3O8 measured following synthesis of the 
material (time = 0), and after storage for two years under the following conditions:  High 
Temperature High Relative Humidity (HTHH), Low Temperature High Relative Humidity (LTHH), 
High Temperature Low Relative Humidity (HTLH), and Low Temperature Low Relative Humidity 
(LTLH). 
 
An SEM image reveals that the material is composed of fairly spherical granules 
approximately 2 µm in diameter (Figure 3), which is comparable with the morphology 
measured from the uranyl peroxide precursor. 
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FIG. 3. SEM images at 5000X of U3O8 measured following synthesis of the material (time = 0), and 
after storage for two years under the following conditions:  High Temperature High Relative Humidity 
(HTHH), Low Temperature High Relative Humidity (LTHH), High Temperature Low Relative 
Humidity (HTLH), and Low Temperature Low Relative Humidity (LTLH). 
 
Ingrowth of metaschoepite (UO3·2H2O) is measured following exposure of U3O8 to controlled 
relative humidity and temperature over two years. Comparison of X-ray diffraction patterns 
with reference lines reported in the Cambridge Crystallographic Database reveals both U3O8 
and UO3·2H2O in the subsamples stored under high temperature and high humidity after two 
years (Figure 1). Significant changes are observed in the Fourier Transforms (FT) of the 
samples stored under high humidity conditions in terms of reduced amplitude in the U-U 
region, and changes in the number and position of peaks in the U-O region, particularly at 
high temperature. The FTs of the EXAFS data are not significantly altered in terms of the U-O 
local structure after exposure to low humidity conditions after two years (Figure 2). While the 
subsamples stored at low relative humidities maintain a similar shape after two years of 
storage, images of the two samples stored under high relative humidity conditions reveal 
visible flattening and loss of granule definition (Figure 3). 
 
4.  CONCLUSIONS 
 
Our studies show that chemical signatures indicative of reaction history are measurable, and 
that chemical signatures may change under certain conditions. Further work is being 
conducted to exploit the rich, albeit complex, information from these complimentary probes to 
support the reconstruction of a sample’s process history.   
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