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What is the problem that a Molecular and 
Chemical  Forensic approach is addressing? 

• Increasingly varied and asymmetric threats are 
expanding the scope of nuclear forensics 
 
• Signatures are varied and can evolve, while any 
given sample may include multiple signatures 

• The scale of a signature may be tiny or LARGE 
 

• Accurate, effective technical analysis depends on  
 - identifying new signatures   
 - understanding measurement limitations 
 - evaluating complementary nature between 
 traditional and new measurements   
 - assessing the value of the information 
 
• Production, conversion and aging of actinide 
materials are chemical in nature 
  
 
 

Pu chip 
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Levels of “Chemical Analysis” 

• Refers indirectly to the phase association:  
dissolved, or associated with various 
mineral or colloidal phases 

Physical (or Phase) Speciation 

• Refers to the chemical form and generally 
includes a knowledge of phase 
 

• Depending on the type of information, 
various levels exist 
 

• Identity of the element 
• Physical state 
 

Chemical  Speciation 
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What do we mean by chemical speciation? 
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What do we mean by chemical speciation? 
Levels of “Chemical Analysis” 

• Refers indirectly to the phase association:  
dissolved, or associated with various 
mineral or colloidal phases 

Physical (or Phase) Speciation 

• Refers to the chemical form and generally 
includes a knowledge of phase 
 

• Depending on the type of information, 
various levels exist 
 

• Identity of the element 
• Physical state 
• Oxidation state 
 

Chemical  Speciation 
U(III)            U(IV)           U(V)            U(VI) 
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Levels of “Chemical Analysis” 

• Refers indirectly to the phase association:  
dissolved, or associated with various 
mineral or colloidal phases 

Physical (or Phase) Speciation 

• Refers to the chemical form and generally 
includes a knowledge of phase 
 

• Depending on the type of information, 
various levels exist 
 

• Identity of the element 
• Physical state 
• Oxidation state 
• Empirical formula 

Chemical  Speciation 

UO2(OH)+ 

U(III)            U(IV)           U(V)            U(VI) 
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What do we mean by chemical speciation? 
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Levels of “Chemical Analysis” 

• Refers indirectly to the phase 
association:  dissolved, or associated 
with various mineral or colloidal phases 

Physical (or Phase) Speciation 

• Refers to the chemical form and generally 
includes a knowledge of phase 
 

• Depending on the type of information, 
various levels exist 

• Identity of the element 
• Physical state 
• Oxidation state 
• Empirical formula 
• Molecular formula 
• Molecular structure 

Chemical  Speciation 

UO2(OH)+ 

U(III)            U(IV)           U(V)            U(VI) 
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What do we mean by chemical speciation? 
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Actinide processing is rich in chemical 
information 
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Uranium  
Ore  

• > 10 phases between UO2  
  and UO3, in addition to  
  hydrated forms of UO3 
 
• Deceptively simple formula  
  and cubic structure of UO2  
  masks incredibly complex  
  speciation 
 
• Weathering under  
  environmental conditions may  
  effect changes in morphology, chemical speciation 
 
• Can chemical speciation of major and minor constituents be measured? 
• Do signatures of chemical speciation change over time? 
• How can we ground these measurements with standards? 
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What tools provide access to chemical 
speciation? 
 Morphology 

• SEM-Energy 
  Dispersive  
  Spectroscopy 
 
 
 
 
 
 
 
• Inductively Coupled 
  Plasma – Mass Spectrometry 
 

• X-ray diffraction analysis 
  
• X-ray Absorption 
  Spectroscopy 
   

Elemental Structural (lattice) 

•  Scanning Electron Microscopy 

γ-UO3 
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Measurement Capabilities 
 

Bruker D8 ADVANCE  
powder X-ray  
diffractometer 

Stanford Synchrotron 
Radiation Lightsource 
Menlo Park, CA 

FEI Quanta 200F Field 
Emission Scanning Electron 
Microscope 

Morphology Elemental/isotopic Analysis 

Chemical Speciation 
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Thermo Finnigan Element XR 
ICP-MS 
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How is local structure through XAFS 
determined? 
 XAFS- X-ray Absorption  Fine Structure 

 high energy X-rays allow for excitation of core electrons to bound states  
XANES- X-ray Absorption Near Edge Structure 
 arises from differences in oxidation state, local structure  
EXAFS- Extended X-ray Absorption Fine Structure 
 distribution of interatomic distances around atoms 

22 keV 

21 keV 

17 keV 

100 keV 
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Systematic experiments on UO2 using EXAFS to 
measure sensitivity to oxidation. 

Increased oxidation yields monotonic changes. 

With H2O, intermediate temperature              Weak CO:CO2 oxidizer, high temperature 

Conradson, S. D.; Manara, D.; Wastin, F.; Clark, D. L.; Lander, G. H.; Morales, L. A.; Rebizant, J.; 
Rondinella, V. V. . Inorg. Chem.  2004, 43(22), pp 6922-6935. 
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Reference information is derived from high-
purity uranium oxide bulk materials 
 
Uº                               UO2

2+ 

 
 
UO2

2+  +  H2O2            UO2(O2)·xH2O 
 
 
UO2(O2)·2H2O             A-UO3 
 
 
A-UO3                         U3O8 
 
 
A-UO3                         UO2 

UO2(O2)  
precipitate 

Reaction vessel 

Tube furnace 

UO2 

LA-UR 14-24839 

pH 3 
air 

400ºC 
air 

900ºC 
air 

500ºC 
H2 

NIST SRM U960 
NBL A112A 



Slide 13 U N C L A S S I F I E D  

Can trace chemical species be measured from 
legacy samples of U3O8 
 

Precipitate Source            Precipitate               Sample Product  

UNH UO4 U3O8 
pH 1 
20ºC 

800ºC 

UNH 

UO2F2 

UO4 
pH 1 
20ºC 

975ºC 

pH 8.4 
20ºC ADU 800ºC 

U3O8 

U3O8 

LA-UR 14-24839 

Age of samples:  ~2-3 years 
Common source of starting material 
Preparation scale:  10 g 
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Comparison of SEM images of U3O8 materials 
at time 0 

S1 L1 

L2 L3 

LA-UR 14-24839 

A-UO3  U3O8 
900ºC 

UNH  UO4  U3O8 

UNH  UO4  U3O8 UO2F2  ADU  U3O8 

20ºC 

20ºC 20ºC 

pH 1 

pH 1 pH 8.4 

800ºC 

800ºC 975ºC 

air 
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Comparison of reference lines with pXRD 
patterns of U3O8 materials identifies speciation 
 

A-UO3  U3O8 
900ºC 

UNH  UO4  U3O8 

UNH  UO4  U3O8 

UO2F2  ADU  U3O8 

20ºC 

20ºC 

20ºC 

pH 1 

pH 1 

pH 8.4 

800ºC 

800ºC 

975ºC 
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S1 

L1 

L2 

L3 

air 
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EXAFS of U3O8 materials reveals disorder 
 

air 

(UO2(O2)·xH2O) 

(U3O8 + UO3·xH2O) 

(U3O8 + UO2F2·xH2O) 

LA-UR 14-24839 

S1 

L1 

L2 

L3 

A-UO3  U3O8 
900ºC 

UNH  UO4  U3O8 
20ºC 

pH 1 

800ºC 

UNH  UO4  U3O8 
20ºC 

pH 1 

975ºC 

UO2F2  ADU  U3O8 
20ºC 

pH 8.4 

800ºC 
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Aging Vessels and Circulating Bath 
 

Anovitz, L. M.; Riciputi, L. R.; Cole, D. R.;  
Gruszkiewicz, M. S.; Elam, J. M. J.  
Non-Cryst. Solids 2006, 352, 5652. 
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Do these chemical signatures change over 
time? 
 Constant relative humidity (+/- 2%) is 
produced by an excess of a water soluble 
salt in contact with its saturated solution.   
 

• ASTM International, Designation: 
E104-02, Standard Practice for 
Maintaining Constant Relative 
Humidity by Means of Aqueous 
Solutions 

 
• CRC Manual, Constant Humidity 
Solutions 

  RH = A*exp(B/T) 
 
Lithium Iodide:  25% RH at 278.15 K 
  15% RH at 310.15 K 
Potassium Nitrate: 97% RH at 278.15 K 
  89% RH at 310.15 K 
 

LA-UR 14-24839 

Relative Humidity = Actual Vapor Density 
              Saturation Vapor Density 

Conditions Water vapor 
density 

LTLH 1.7e-06 g/cm3 

HTLH 6.6e-06 g/cm3 

LTHH 6.7e-06 g/cm3 

HTHH 39e-06 g/cm3 

Liquid water ~1 g/cm3 
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Morphology of S1 at all conditions after 0 and 2 
years 
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A-UO3  U3O8 
900ºC 

air 
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pXRD patterns of S1 at all conditions after 3 
years reveals speciation 
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A-UO3  U3O8 
900ºC 

air 
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EXAFS of S1 at all conditions after 0 and 3 
years 

LA-UR 14-24839 

A-UO3  U3O8 
900ºC 

air 
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Morphology of L2 U3O8 at all conditions after 0 
and 2 years 

LA-UR 14-24839 

(U3O8 + UO3·xH2O) 

UNH  UO4  U3O8 
20ºC 

pH 1 

975ºC 
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pXRD patterns of L2 U3O8 at all conditions after 
2 years reveals speciation 

LA-UR 14-24839 

(U3O8 + UO3·xH2O) UNH  UO4  U3O8 
20ºC 

pH 1 

975ºC 
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EXAFS of L2 U3O8 at all conditions after 0 and 2 
years 

LA-UR 14-24839 

(U3O8 + UO3·xH2O) UNH  UO4  U3O8 
20ºC 

pH 1 

975ºC 
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Morphology of L3 U3O8 at all conditions after 0 
and 2 years 
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(U3O8 + UO2F2·xH2O) 

UO2F2  ADU  U3O8 
20ºC 

pH 8.4 

800ºC 
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pXRD patterns of L3 U3O8 at all conditions after 
2 years reveals oxidation 

LA-UR 14-24839 

(U3O8 + UO2F2·xH2O) UO2F2  ADU  U3O8 
20ºC 

pH 8.4 

800ºC 
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EXAFS of L3 U3O8 at all conditions after 0 and 2 
years 

LA-UR 14-24839 

(U3O8 + UO2F2·xH2O) UO2F2  ADU  U3O8 
20ºC 

pH 8.4 

800ºC 
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Morphology of L1 at all conditions after 0 and 2 
years 

LA-UR 14-24839 

T=2 yrs. 
LTLH-5°C @ 25% RH  

(UO2(O2)·xH2O) 

UNH  UO4  U3O8 
20ºC 

pH 1 

800ºC 
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pXRD patterns of L1 U3O8 at all conditions after 
3 years reveals hydration 
 

LA-UR 14-24839 

(UO2(O2)·xH2O) UNH  UO4  U3O8 
20ºC 

pH 1 
T=2 yrs. 

LTLH-5°C @ 25% RH  
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EXAFS of L1 U3O8 at all conditions after 0 and 
3.5 years 
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(UO2(O2)·xH2O) UNH  UO4  U3O8 
20ºC 

pH 1 
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Conclusions 
 
• Processing of uranium oxides is chemical in nature, providing 

opportunities for measurements of chemical signatures 
 

• Results from an integrated approach rely upon synthesis, 
spectroscopy and morphologic characterization of a variety of 
materials 
 

• Chemical speciation following aging under environmental 
conditions is providing insights into chemical transformations 
 

• Speciation can be characterized, not only by µ-XRD and µ-
XANES spectroscopy, but also via µ-EXAFS measurements, 
an incisive technique for determining chemical speciation and 
changes in local structure 

LA-UR 14-24839 
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