Probing Forensic Signatures of Nuclear Materials

Marianne P. Wilkerson, S. D. Conradson, J. Ellis, S. Kozimor, R. Martin, A. Pugmire, B. Scott, A. Tamasi, G. Wagner, J. Walensky, M. Zimmer

11 July 2014

Transformational and Applied Research Directorate, National Technical Nuclear Forensics Center U.S. Department of Homeland Security

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

Slide 1

What is the problem that a *Molecular and Chemical Forensic approach* is addressing?

• Increasingly varied and asymmetric threats are expanding the scope of nuclear forensics

- Signatures are varied and can evolve, while any given sample may include multiple signatures
- The scale of a signature may be $_{\mbox{\tiny tiny}}$ or LARGE
- Accurate, effective technical analysis depends on
 - identifying new signatures
 - understanding measurement limitations
 - evaluating complementary nature between traditional and new measurements
 - assessing the value of the information
- Production, conversion and aging of actinide materials are chemical in nature

UNCLASSIFIED

I A-UR 14-24839

Slide 2

Operated by Los Alamos National Security, LLC for NNSA

Physical (or Phase) Speciation

 Refers indirectly to the phase association: dissolved, or associated with various mineral or colloidal phases

Chemical Speciation

- Refers to the chemical form and generally includes a knowledge of phase
- Depending on the type of information, various levels exist
 - Identity of the element
 - Physical state

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Levels of "Chemical Analysis"

Physical (or Phase) Speciation

 Refers indirectly to the phase association: dissolved, or associated with various mineral or colloidal phases

Chemical Speciation

- Refers to the chemical form and generally includes a knowledge of phase
- Depending on the type of information, various levels exist
 - Identity of the element
 - Physical state
 - Oxidation state

Levels of "Chemical Analysis"

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

Slide 4

Physical (or Phase) Speciation

 Refers indirectly to the phase association: dissolved, or associated with various mineral or colloidal phases

Chemical Speciation

- Refers to the chemical form and generally includes a knowledge of phase
- Depending on the type of information, various levels exist
 - Identity of the element
 - Physical state
 - Oxidation state
 - Empirical formula

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

U(IV)

U(III)

U(V)

UO₂(OH)+

Slide 5

U(VI)

Physical (or Phase) Speciation

 Refers indirectly to the phase association: dissolved, or associated with various mineral or colloidal phases

Chemical Speciation

- Refers to the chemical form and generally includes a knowledge of phase
- Depending on the type of information, various levels exist
 - Identity of the element
 - Physical state
 - Oxidation state
 - Empirical formula
 - Molecular formula
 - Molecular structure

UNCLASSIFIED

Slide 6

Operated by Los Alamos National Security, LLC for NNSA

U(IV)

I A-UR 14-24839

U(III)

U(V)

U(VI)

Actinide processing is rich in chemical

information

- > 10 phases between UO_2 and UO_3 , in addition to hydrated forms of UO_3
- Deceptively simple formula and cubic structure of UO_2 masks incredibly complex speciation
- Weathering under environmental conditions may effect changes in morphology, chemical speciation
- Can chemical speciation of major and minor constituents be measured?
- Do signatures of chemical speciation change over time?
- How can we ground these measurements with standards?

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

Slide 7

What tools provide access to chemical speciation?

Operated by Los Alamos National Security, LLC for NNSA

Measurement Capabilities

Chemical Speciation

UNCLASSIFIED

Slide 9

Operated by Los Alamos National Security, LLC for NNSA

How is local structure through XAFS determined?

XAFS- X-ray Absorption Fine Structure high energy X-rays allow for excitation of core electrons to bound states XANES- X-ray Absorption Near Edge Structure arises from differences in oxidation state, local structure **EXAFS**- Extended X-ray Absorption Fine Structure distribution of interatomic distances around atoms

 h_{V_1}

Operated by Los Alamos National Security, LLC for NNSA

Systematic experiments on UO₂ using EXAFS to measure sensitivity to oxidation.

Increased oxidation yields monotonic changes.

Conradson, S. D.; Manara, D.; Wastin, F.; Clark, D. L.; Lander, G. H.; Morales, L. A.; Rebizant, J.; Rondinella, V. V. . *Inorg. Chem.* 2004, *43*(22), pp 6922-6935.

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 14-24839

Slide 11

Reference information is derived from highpurity uranium oxide bulk materials

I A-UR 14-24839

Operated by Los Alamos National Security, LLC for NNSA

Can trace chemical species be measured from legacy samples of U₃O₈

Precipitate SourcePrecipitateSample Product $UNH \xrightarrow{pH 1}_{20^{\circ}C}$ $UO4 \xrightarrow{800^{\circ}C}$ U3O8 $UNH \xrightarrow{pH 1}_{20^{\circ}C}$ $UO4 \xrightarrow{975^{\circ}C}$ U3O8 $UO2F2 \xrightarrow{pH 8.4}_{20^{\circ}C}$ $ADU \xrightarrow{800^{\circ}C}$ U3O8

Age of samples: ~2-3 years Common source of starting material Preparation scale: 10 g

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

I A-UR 14-24839

Comparison of SEM images of U₃O₈ materials at time 0

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 14-24839

Comparison of reference lines with pXRD patterns of U₃O₈ materials identifies speciation

Operated by Los Alamos National Security, LLC for NNSA

EXAFS of U₃O₈ materials reveals disorder

UNCLASSIFIED

Slide 16

NNS8

Operated by Los Alamos National Security, LLC for NNSA

Aging Vessels and Circulating Bath

VCR Gland w/ Welded on Bottom

Anovitz, L. M.; Riciputi, L. R.; Cole, D. R.; Gruszkiewicz, M. S.; Elam, J. M. **J. Non-Cryst. Solids** 2006, *352*, 5652.

UNCLASSIFIED

Slide 17

Operated by Los Alamos National Security, LLC for NNSA

Do these chemical signatures change over time?

Constant relative humidity (+/- 2%) is produced by an excess of a water soluble salt in contact with its saturated solution.

> • ASTM International, Designation: E104-02, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions

 CRC Manual, Constant Humidity Solutions
RH = A*exp(B/T)
Lithium Iodide: 25% RH at 278.15 K 15% RH at 310.15 K
Potassium Nitrate: 97% RH at 278.15 K

89% RH at 310.15 K

UNCLASSIFIED

LOS Alamos

Operated by Los Alamos National Security, LLC for NNSA

Conditions	Water vapor density
LTLH	1.7e-06 g/cm ³
HTLH	6.6e-06 g/cm ³
LTHH	6.7e-06 g/cm ³
НТНН	39e-06 g/cm ³
Liquid water	~1 g/cm ³
	Slide 18

Morphology of S1 at all conditions after 0 and 2 years

Operated by Los Alamos National Security, LLC for NNSA

LA-UR 14-24839

Slide 19

pXRD patterns of S1 at all conditions after 3 years reveals speciation

EXAFS of S1 at all conditions after 0 and 3 years

Morphology of L2 U₃O₈ at all conditions after 0 and 2 years

Operated by Los Alamos National Security, LLC for NNSA

OS

pXRD patterns of L2 U₃O₈ at all conditions after 2 years reveals speciation

EXAFS of L2 U₃O₈ at all conditions after 0 and 2 years

Morphology of L3 U_3O_8 at all conditions after 0 and 2 years

Operated by Los Alamos National Security, LLC for NNSA

pXRD patterns of L3 U₃O₈ at all conditions after 2 years reveals oxidation

EXAFS of L3 U_3O_8 at all conditions after 0 and 2 years

Morphology of L1 at all conditions after 0 and 2 years

Operated by Los Alamos National Security, LLC for NNSA

pXRD patterns of L1 U₃O₈ at all conditions after 3 years reveals hydration

EXAFS of L1 U_3O_8 at all conditions after 0 and 3.5 years

LA-UR 14-24839

NNS®

Operated by Los Alamos National Security, LLC for NNSA

Conclusions

- Processing of uranium oxides is chemical in nature, providing opportunities for measurements of chemical signatures
- Results from an integrated approach rely upon synthesis, spectroscopy and morphologic characterization of a variety of materials
- Chemical speciation following aging under environmental conditions is providing insights into chemical transformations
- Speciation can be characterized, not only by μ-XRD and μ-XANES spectroscopy, but also via μ-EXAFS measurements, an incisive technique for determining chemical speciation and changes in local structure

Operated by Los Alamos National Security, LLC for NNSA

Slide 31

Acknowledgements

Synthesis

Dallas D. Reilly, Univ. Nevada-Las Vegas Tyler Mullen, H Alison L. Tamasi, Univ. Missouri-Columbia (NTNFC Graduate Reid B. Porter Fellow) Christy E. Rug

Morphology

Beau J. Barker, LANL Seaborg Institute Postdoc Fellow Gregory L. Wagner, Technologist 2 Sandra A. Zerkle, UCSD undergraduate Mindy M. Zimmer, Postdoc

Powder X-ray Diffraction Analysis Brian L. Scott

X-ray Absorption Spectroscopy

Steven D. Conradson Stosh A. Kozimor Alison L. Pugmire (LANL LDRD Early Career Award)

Isotopic Analysis

William S. Kinman

Computational Analysis

Tyler Mullen, High School Co-Op Reid B. Porter Christy E. Ruggiero Lav Tandon

Theory

Jason K. Ellis, Postdoc Richard L. Martin

Additional Collaborators

Larry Anovitz, University of Tennessee Corwin H. Booth, LBNL Carol J. Burns David L. Clark Kenneth Czerwinski, Univ. Nevada-Las Vegas Julianna E. Fessenden-Rahn Susan D. Hanson Justin Holland, Y-12 NSC Andrew Sutton Larry E. Ussery Gregory J. Van Tuyle Justin R. Walensky, Univ. Missouri Sam Webb, SSRL

This work has been supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-08-X-00805. This support does not constitute an express or implied endorsement on the part of the Government.

Operated by Los Alamos National Security, LLC for NNSA

