

Mass Spectrometry in Nuclear Forensics

Suresh K. Aggarwal

Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

Email: skaggr2002@gmail.com

Overview

- Illicit trafficking/smuggling of nuclear materials is of great concern
- Measurements on interdicted materials to trace their origin and to detect undeclared nuclear activities
- Isotopic composition of U and Pu (depends on isotopic enrichments, reactor irradiation history, cooling)
- Variety of Nuclear Analytical Techniques being developed for Nuclear Forensics (mass spectrometry, radiometry, LIBS, portable XRF)

Inorganic mass spectrometry occupies a unique place for determining isotopic composition, amount and trace constituents present

Natural variations in the isotopic composition of O, S, Sr and Pb important for geolocation of the source material

Different Grades of Uranium and Plutonium

U grade	% of ² 35U
DEPLETED U	< 0.71%
NATURAL U	About 0.71%
LEU (Low Enriched U)	> 0.71% to < 20%
HEU (High Enriched U)	> 20% to < 90%
Oralloy (Weapons Grade U)	90% or more

Pu grade	% of ²⁴⁰ Pu
REACTOR GRADE Pu	> 18%
FUEL GRADE Pu	> 7% to < 18%

Evaporation and Ionization Behaviour of U and Pu in TIMS

WEAPONS GRADE Pu	< 7%
M.S. Technique Used	Application
Thermal Ionisation Mass Spectrometry (TIMS)	Isotopic composition and amount
Inductively Coupled Plasma source Mass Spectrometry (ICPMS)	Trace Impurities
Stable Isotope Ratio Mass Spectrometry (SIRMS)	Isotopic composition of Oxygen, Sulphur
Secondary Ion Mass Spectrometry (SIMS)	Particle Analysis
Gas Chromatography Mass Spectrometry (GCMS)	Residual Solvents/Chemicals

1E-14 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Vaporisation Filament Current (Amp.)

Different Chronometers for Pu Age Determination

Parent (Half-life)	Daughter	Spikes Needed	Remarks
Pu-238 <mark>(87.7 yrs)</mark>	U-234	Pu-239, U- 235	Low Abundance of Pu-238, Isobaric interference from U-238
Pu-239 (24110 yrs)	U-235	Pu-244, U- 233	Pu-244 Spike availability restricted/limited
Pu-240 (6553 yrs)	U-236	Pu-244, U- 233	Pu-244 Spike availability restricted/limited
Pu-241 (14.4 yrs)	Am-241, Np-237	Pu-244, Am-243	Spikes not available, Am-241 and Np-237 by ICPMS, γ spectrometry for ²⁴¹ Am
Pu-242 (3.76 x 10 ⁵ vrs)	U-238		Long half-life of parent , not of interest

Pu-238 can be a useful chronometer for age determination of high burn-up Pu

CONCLUSION:

0.7956(0.15%) 0.003014 0.003014 (0.21%) 1 2 1.5468 (0.32%) 0.005860 0.005853 (0.23%) 3.0130 (0.69%) 0.011417 0.011524 (0.09%) 3 0.019267 0.019354 (0.07%) 5.0848 (0.30%) 4

= I(²³⁸ T) - I (²³⁵ U) x R(²³⁸ U/ ²³⁵ U)
= I(²³⁸ T) - I (²³⁵ U) x R(²³⁸ UO/ ²³⁵ UO)

$$I(^{238}Pu) = I(^{238}T) - I(^{238}U)$$

$$I(^{238}T) = I(^{238}U) + I(^{238}Pu)$$

²³⁸Pu/(²³⁹Pu+²⁴⁰Pu) ²³⁸Pu/²³⁹Pu Amount Ratio by Mixture (SM-89) Alpha Activity Ratio AS TIMS

(3.76 X 10° Yrs)

not of interest