## FIRST ANALYSIS OF THE UPDATED ITPA GLOBAL H-MODE CONFINEMENT DATABASE



- ITPA Global H-mode Confinement Database ongoing update:
  - · Focus on ITER conditions
  - Expansion of parameter range and new variables
  - JET ITER-like wall (ILW): 627 new H-mode plasmas
  - ASDEX Upgrade (AUG) full W wall: 825 new H-mode points
  - DB5: 13,913 data points from 19 tokamaks
- Global confinement scaling is being studied using regression analysis:
  - Data selection criteria have been updated
  - Alternative regression techniques are being tested to address uncertainties and data weighting
  - Stepwise approach going from simple models (e.g. standard power law) to more complex/realistic models
- Single-device scalings:
  - Dependence on  $B_{t}$ ,  $\bar{n}_{e}$  weakest in ITER-like devices
  - Power degradation weaker in full-metal devices
- Multi-machine scalings:
  - Vs. IPB98(y,2): stronger Ip scaling, weaker dependence on  $B_{t}$ ,  $\bar{n}_{e}$
  - Triangularity  $\delta$  may have considerable influence on confinement



FIG. 1. H98(y, 2) in DB5 subselection vs. Greenwald fraction. Points from fully metallic devices ("high-Z") are highlighted.



**FIG. 2.** Experimental  $\tau_{E,th}$  vs. predictions  $\hat{\tau}_{E,th}$  using least squares regression on DB5 subselection.